In quantum information technology, crucial information is regularly encoded in different quantum states. To extract information, the identification of one state from the others is inevitable. However, if the states are non-orthogonal and unknown, this task will become awesomely tricky, especially when our resources are also limited. Here, we introduce the quantum stochastic neural network (QSNN), and show its capability to accomplish the binary discrimination of quantum states. After a handful of optimizing iterations, the QSNN achieves a success probability close to the theoretical optimum, no matter whether the states are pure or mixed. Other than binary discrimination, the QSNN is also applied to classify an unknown set of states into two types: entangled ones and separable ones. After training with four samples, it can classify a number of states with acceptable accuracy. Our results suggest that the QSNN has the great potential to process unknown quantum states in quantum information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.