The growth of the Tibetan Plateau throughout the past 66 million years has profoundly affected the Asian climate, but how this unparalleled orogenesis might have driven vegetation and plant diversity changes in eastern Asia is poorly understood. We approach this question by integrating modeling results and fossil data. We show that growth of north and northeastern Tibet affects vegetation and, crucially, plant diversity in eastern Asia by altering the monsoon system. This northern Tibetan orographic change induces a precipitation increase, especially in the dry (winter) season, resulting in a transition from deciduous broadleaf vegetation to evergreen broadleaf vegetation and plant diversity increases across southeastern Asia. Further quantifying the complexity of Tibetan orographic change is critical for understanding the finer details of Asian vegetation and plant diversity evolution.
The formation of ozone and secondary organic aerosol (SOA) from benzene-NO x and ethylbenzene-NO x irradiations was investigated under different levels of relative humidity (RH) in a smog chamber. In benzene and ethylbenzene irradiations, the intensity of the bands of O H, C O, C O, and C OH from SOA samples all greatly increased with increasing RH. The major substances in SOA were determined to be carboxylic acids and glyoxal hydrates. It was also found that SOA contained aromatic products, and NO 2and ONO 2 -containing products. The results show that the increase in RH can greatly reduce the maximum O 3 by the transfer of NO 2and ONO 2 -containing products into the particle phase. During the process of evaporation, the lost substances from the collected SOA have similar structures for both benzene and ethylbenzene. This demonstrates that ethyl-containing substances are very stable and difficult to evaporate. For benzene, some of glyoxal hydrates were left to form C O C-and C O-containing species like hemiacetal and acetal after evaporation, whereas for ethylbenzene, glyoxal favored cross reactions with ethylglyoxal during evaporation. Only a few species in SOA were released into the gas phase during evaporation while a large part of SOA remained, which is mainly composed of carboxylic acid. It is concluded that the aqueous radical reactions and the hydration from glyoxal can be enhanced under high RH conditions, which can irreversibly enhance the formation of SOA from both benzene and ethylbenzene.
Abstract:Accurate information of rainfall is needed for sustainable water management and more reliable flood forecasting. The advances in mesoscale numerical weather modelling and modern computing technologies make it possible to provide rainfall simulations and forecasts at increasingly higher resolutions in space and time. However, being one of the most difficult variables to be modelled, the quality of the rainfall products from the numerical weather model remains unsatisfactory for hydrological applications. In this study, the sensitivity of the Weather Research and Forecasting (WRF) model is investigated using different domain settings and various storm types to improve the model performance of rainfall simulation. Eight 24-h storm events are selected from the Brue catchment, southwest England, with different spatial and temporal distributions of the rainfall intensity. Five domain configuration scenarios designed with gradually changing downscaling ratios are used to run the WRF model with the ECMWF 40-year reanalysis data for the periods of the eight events. A two-dimensional verification scheme is proposed to evaluate the amounts and distributions of simulated rainfall in both spatial and temporal dimensions. The verification scheme consists of both categorical and continuous indices for a first-level assessment and a more quantitative evaluation of the simulated rainfall. The results reveal a general improvement of the model performance as we downscale from the outermost to the innermost domain. Moderate downscaling ratios of 1:7, 1:5 and 1:3 are found to perform better with the WRF model in giving more reasonable results than smaller ratios. For the sensitivity study on different storm types, the model shows the best performance in reproducing the storm events with spatial and temporal evenness of the observed rainfall, whereas the type of events with highly concentrated rainfall in space and time are found to be the trickiest case for WRF to handle. Finally, the efficiencies of several variability indices are verified in categorising the storm events on the basis of the two-dimensional rainfall evenness, which could provide a more quantitative way for the event classification that facilitates further studies. It is important that similar studies with various storm events are carried out in other catchments with different geographic and climatic conditions, so that more general error patterns can be found and further improvements can be made to the rainfall products from mesoscale numerical weather models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.