BackgroundThe miR-9 family microRNAs have been identified as a tumor suppressor miRNA in cancers. We postulated that miR-9-1, miR-9-2 and miR-9-3 might be inactivated by DNA hypermethylation in chronic lymphocytic leukemia (CLL).MethodsMethylation of miR-9-1, miR-9-2 and miR-9-3 was studied in eight normal controls including normal bone marrow, buffy coat, and CD19-sorted peripheral blood B-cells from healthy individuals, seven CLL cell lines, and seventy-eight diagnostic CLL samples by methylation-specific polymerase chain reaction.ResultsThe promoters of miR-9-3 and miR-9-1 were both unmethylated in normal controls, but methylated in five (71.4%) and one of seven CLL cell lines respectively. However, miR-9-2 promoter was methylated in normal controls including CD19 + ve B-cells, hence suggestive of a tissue-specific but not tumor-specific methylation, and thus not further studied. Different MSP statuses of miR-9-3, including complete methylation, partial methylation, and complete unmethylation, were verified by quantitative bisulfite methylation analysis. 5-Aza-2′-deoxycytidine treatment resulted in miR-9-3 promoter demethylation and re-expression of pri-miR-9-3 in I83-E95 and WAC3CD5+ cells, which were homozygously methylated for miR-9-3. Moreover, overexpression of miR-9 led to suppressed cell proliferation and enhanced apoptosis together with downregulation of NFκB1 in I83-E95 cells, supporting a tumor suppressor role of miR-9-3 in CLL. In primary CLL samples, miR-9-3 was detected in 17% and miR-9-1 methylation in none of the patients at diagnosis. Moreover, miR-9-3 methylation was associated with advanced Rai stage (≥ stage 2) (P = 0.04).ConclusionsOf the miR-9 family, miR-9-3 is a tumor suppressor miRNA relatively frequently methylated, and hence silenced in CLL; whereas miR-9-1 methylation is rare in CLL. The role of miR-9-3 methylation in the constitutive activation of NFκB signaling pathway in CLL warrants further study.
BackgroundTP53 mutation/deletion is uncommon in chronic lymphocytic leukemia (CLL). We postulated that components of TP53-centered tumor suppressor network, miR-34b/c, in addition to DAPK1 and miR-34a might be inactivated by DNA hypermethylation. Moreover, we tested if miR-34b/c methylation might correlate with miR-203 or miR-124-1 methylation in CLL.MethodsmiR-34b/c, miR-34a and DAPK1 methylation was studied in 11 normal controls, 7 CLL cell lines, and 78 diagnostic CLL samples by methylation-specific polymerase chain reaction. MEC-1 cells were treated with 5-Aza-2’-deoxycytidine for reversal of methylation-associated miRNA silencing. Tumor suppressor properties of miR-34b were demonstrated by over-expression of precursor miR-34b in MEC-1 cells.ResultsmiR-34b/c promoter was unmethylated in normal controls, but completely methylated in 4 CLL cell lines. miR-34b/c expression was inversely correlated with miR-34b/c methylation. Different MSP statuses of miR-34b/c, including complete methylation and complete unmethylation, were verified by quantitative bisulfite pyrosequencing. 5-Aza-2’-deoxycytidine treatment resulted in promoter demethylation and miR-34b re-expression in MEC1 cells. Moreover, over-expression of miR-34b resulted in inhibition of cellular proliferation and increased cell death. In primary CLL samples, miR-34a, miR-34b/c and DAPK1 methylation was detected in 2.6%, 17.9% and 34.6% of patients at diagnosis respectively. Furthermore, 39.7%, 3.8% and 2.6% patients had methylation of one, two or all three genes respectively. Overall, 46.2% patients had methylation of at least one of these three genes. Besides, miR-34b/c methylation was associated with methylation of miR-34a (P = 0.03) and miR-203 (P = 0.012) in CLL.ConclusionsTaken together, miR-34b/c is a tumor suppressor miRNA frequently methylated, and hence silenced in CLL. Together with DAPK1 methylation, miR-34b/c methylation is implicated in the disruption of the TP53-centered tumor suppressor network. Moreover, the association of miRNA methylation warrants further study.
BM742401 is a tumor suppressor lncRNA downregulated in gastric cancer. As the promoter region and the entire transcript are embedded in a CpG island, we postulated that BM742401 is a tumor suppressor lncRNA inactivated by DNA methylation in chronic lymphocytic leukemia (CLL). The promoter of BM742401 was unmethylated in normal controls including three each of normal bone marrow, peripheral blood buffy coats, and CD19-sorted peripheral B-cells, but methylated in four (57.1%) CLL cell lines. Methylation of BM742401 correlated inversely with expression. In the completely methylated WAC3CD5+ CLL cells, 5-Aza-2′-deoxycytidine treatment led to promoter demethylation and re-expression of BM742401 transcript. Functionally, stable overexpression of BM742401 resulted in inhibition of cellular proliferation and enhanced apoptosis through caspase-9-dependent intrinsic but not caspase-8-dependent extrinsic apoptosis pathway, suggesting a tumor suppressor role of BM742401 in CLL. In primary CLL samples, methylation of BM742401 was detected in 43/98 (43.9%) of patients. Moreover, among CLL patients with standard-risk cytogenetic aberrations, methylation of BM742401 correlated with advanced Rai stage (≥ stage 2)(P = 0.002). Furthermore, BM742401 methylation was associated with miR-129-2 methylation (P = 0.05). BM742401 is a tumor suppressor lncRNA frequently methylated in CLL. The mechanism of BM742401 as a tumor suppressor warrants further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.