SignificanceDrastic air pollution control in China since 2013 has achieved sharp decreases in fine particulate matter (PM2.5), but ozone pollution has not improved. After removing the effect of meteorological variability, we find that surface ozone has increased in megacity clusters of China, notably Beijing and Shanghai. The increasing trend cannot be simply explained by changes in anthropogenic precursor [NOx and volatile organic compound (VOC)] emissions, particularly in North China Plain (NCP). The most important cause of the increasing ozone in NCP appears to be the decrease in PM2.5, slowing down the sink of hydroperoxy radicals and thus speeding up ozone production. Decreasing ozone in the future will require a combination of NOx and VOC emission controls to overcome the effect of decreasing PM2.5.
Abstract. Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at −5.2 µg m−3 a−1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m−3 a−1 (±95 % confidence interval) for Beijing–Tianjin–Hebei, -6.1±1.1 µg m−3 a−1 for the Yangtze River Delta, -2.7±0.8 µg m−3 a−1 for the Pearl River Delta, -6.7±1.3 µg m−3 a−1 for the Sichuan Basin, and -6.5±2.5 µg m−3 a−1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is −4.6 µg m−3 a−1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m−3 a−1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m−3 a−1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m−3 a−1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m−3 a−1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m−3 a−1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls.
Abstract. Surface ozone data from the Chinese Ministry of Ecology and Environment (MEE) network show sustained increases across the country over the 2013–2019 period. Despite Phase 2 of the Clean Air Action Plan targeting ozone pollution, ozone was higher in 2018–2019 than in previous years. The mean summer 2013–2019 trend in maximum 8 h average (MDA8) ozone was 1.9 ppb a−1 (p<0.01) across China and 3.3 ppb a−1 (p<0.01) over the North China Plain (NCP). Fitting ozone to meteorological variables with a multiple linear regression model shows that meteorology played a significant but not dominant role in the 2013–2019 ozone trend, contributing 0.70 ppb a−1 (p<0.01) across China and 1.4 ppb a−1 (p=0.02) over the NCP. Rising June–July temperatures over the NCP were the main meteorological driver, particularly in recent years (2017–2019), and were associated with increased foehn winds. NCP data for 2017–2019 show a 15 % decrease in fine particulate matter (PM2.5) that may be driving the continued anthropogenic increase in ozone, as well as unmitigated emissions of volatile organic compounds (VOCs). VOC emission reductions, as targeted by Phase 2 of the Chinese Clean Air Action Plan, are needed to reverse the increase in ozone.
Surface ozone is a severe air pollution problem in the North China Plain, which is home to 300 million people. Ozone concentrations are highest in summer, driven by fast photochemical production of hydrogen oxide radicals (HOx) that can overcome the radical titration caused by high emissions of nitrogen oxides (NOx) from fuel combustion. Ozone has been very low during winter haze (particulate) pollution episodes. However, the abrupt decrease of NOx emissions following the COVID-19 lockdown in January 2020 reveals a switch to fast ozone production during winter haze episodes with maximum daily 8-h average (MDA8) ozone concentrations of 60 to 70 parts per billion. We reproduce this switch with the GEOS-Chem model, where the fast production of ozone is driven by HOx radicals from photolysis of formaldehyde, overcoming radical titration from the decreased NOx emissions. Formaldehyde is produced by oxidation of reactive volatile organic compounds (VOCs), which have very high emissions in the North China Plain. This remarkable switch to an ozone-producing regime in January–February following the lockdown illustrates a more general tendency from 2013 to 2019 of increasing winter–spring ozone in the North China Plain and increasing association of high ozone with winter haze events, as pollution control efforts have targeted NOx emissions (30% decrease) while VOC emissions have remained constant. Decreasing VOC emissions would avoid further spreading of severe ozone pollution events into the winter–spring season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.