Sucrose is produced in, and translocated from, photosynthetically active leaves (sources) to support non-photosynthetic tissues (sinks), such as developing seeds, fruits, and tubers. Different plants can utilize distinct mechanisms to transport sucrose into the phloem sieve tubes in source leaves. While phloem loading mechanisms have been extensively studied in dicot plants, there is less information about phloem loading in monocots. Maize and rice are major dietary staples, which have previously been proposed to use different cellular routes to transport sucrose from photosynthetic cells into the translocation stream. The anatomical, physiological, and genetic evidence supporting these conflicting hypotheses is examined. Upon entering sink cells, sucrose often is degraded into hexoses for a wide range of metabolic and storage processes, including biosynthesis of starch, protein, and cellulose, which are all major constituents for food, fibre, and fuel. Sucrose, glucose, fructose, and their derivate, trehalose-6-phosphate, also serve as signalling molecules to regulate gene expression either directly or through cross-talk with other signalling pathways. As such, sugar transport and metabolism play pivotal roles in plant development and realization of crop yield that needs to be increased substantially to meet the projected population demand in the foreseeable future. This review will discuss the current understanding of the control of carbon partitioning from the cellular to whole-plant levels, focusing on (i) the pathways employed for phloem loading in source leaves, particularly in grasses, and the routes used in sink organs for phloem unloading; (ii) the transporter proteins responsible for sugar efflux and influx across plasma membranes; and (iii) the key enzymes regulating sucrose metabolism, signalling, and utilization. Examples of how sugar transport and metabolism can be manipulated to improve crop productivity and stress tolerance are discussed.
Plant growth and development are modulated by concerted actions of a variety of signaling molecules. In recent years, evidence has emerged on the roles of sugar and auxin signals network in diverse aspects of plant growth and development. Here, based on recent progress of genetic analyses and gene expression profiling studies, we summarize the functional similarities, diversities, and their interactions of sugar and auxin signals in regulating two major processes of plant development: cell division and cell expansion. We focus on roles of sugar and auxin signaling in both vegetative and reproductive tissues including developing seed.
Vacuolar invertase (VIN) has long been considered as a major player in cell expansion. However, direct evidence for this view is lacking due, in part, to the complexity of multicellular plant tissues. Here, we used cotton (Gossypium spp.) fibers, fast-growing single-celled seed trichomes, to address this issue. VIN activity in elongating fibers was approximately 4-6-fold higher than that in leaves, stems, and roots. It was undetectable in fiberless cotton seed epidermis but became evident in initiating fibers and remained high during their fast elongation and dropped when elongation slowed. Furthermore, a genotype with faster fiber elongation had significantly higher fiber VIN activity and hexose levels than a slow-elongating genotype. By contrast, cell wall or cytoplasmic invertase activities did not show correlation with fiber elongation. To unravel the molecular basis of VIN-mediated fiber elongation, we cloned GhVIN1, which displayed VIN sequence features and localized to the vacuole. Once introduced to Arabidopsis (Arabidopsis thaliana), GhVIN1 complemented the short-root phenotype of a VIN T-DNA mutant and enhanced the elongation of root cells in the wild type. This demonstrates that GhVIN1 functions as VIN in vivo. In cotton fiber, GhVIN1 expression level matched closely with VIN activity and fiber elongation rate. Indeed, transformation of cotton fiber with GhVIN1 RNA interference or overexpression constructs reduced or enhanced fiber elongation, respectively. Together, these analyses provide evidence on the role of VIN in cotton fiber elongation mediated by GhVIN1. Based on the relative contributions of sugars to sap osmolality in cotton fiber and Arabidopsis root, we conclude that VIN regulates their elongation in an osmotic dependent and independent manner, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.