Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for SARS coronavirus (SARS-CoV) and the new coronavirus (SARS-CoV-2) that is causing the serious epidemic COVID-19. Here we present cryo-EM structures of full-length human ACE2, in the presence of a neutral amino acid transporter B 0 AT1, with or without the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) of SARS-CoV-2, both at an overall resolution of 2.9 Å, with a local resolution of 3.5 Å at the ACE2-RBD interface. The ACE2-B 0 AT1 complex is assembled as a dimer of heterodimers, with the Collectrin-like domain (CLD) of ACE2 mediating homo-dimerization. The RBD is recognized by the extracellular peptidase domain (PD) of ACE2 mainly through polar residues. These findings provide important insights to the molecular basis for coronavirus recognition and infection.
Developing therapeutics against SARS-CoV-2 could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein, but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from ten convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. An mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2, but does not bind the RBD. We defined the epitope of 4A8 as the N terminal domain (NTD) of the S protein by determining its cryo-EM structure in complex with the S protein to an overall resolution of 3.1 Angstrom and local resolution of 3.3 Angstrom for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.
LAT1 (SLC7A5) is one of the representative light chain proteins of heteromeric amino acid transporters, forming a heterodimer with its heavy chain partner 4F2hc (SLC3A2). LAT1 is overexpressed in many types of tumors and mediates the transfer of drugs and hormones across the blood-brain barrier. Thus, LAT1 is considered as a drug target for cancer treatment and may be exploited for drug delivery into the brain. Here, we synthesized three potent inhibitors of human LAT1, which inhibit transport of leucine with IC50 values between 100 and 250 nM, and solved the cryo-EM structures of the corresponding LAT1-4F2hc complexes with these inhibitors bound at resolution of up to 2.7 or 2.8 Å. The protein assumes an outward-facing occluded conformation, with the inhibitors bound in the classical substrate binding pocket, but with their tails wedged between the substrate binding site and TM10 of LAT1. We also solved the complex structure of LAT1-4F2hc with 3,5-diiodo-l-tyrosine (Diiodo-Tyr) at 3.4 Å overall resolution, which revealed a different inhibition mechanism and might represent an intermediate conformation between the outward-facing occluded state mentioned above and the outward-open state. To our knowledge, this is the first time that the outward-facing conformation is revealed for the HAT family. Our results unveil more important insights into the working mechanisms of HATs and provide a structural basis for future drug design.
Angiotensin-converting enzyme 2 (ACE2) has been suggested to be the cellular receptor for the new coronavirus (2019-nCoV) that is causing the coronavirus disease 2019 . Like other coronaviruses such as the SARS-CoV, the 2019-nCoV uses the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) to engage ACE2. We most recently determined the structure of the full-length human ACE2 in complex with a neutral amino acid transporter B 0 AT1. Here we report the cryo-EM structure of the full-length human ACE2 bound to the RBD of the 2019-nCoV at an overall resolution of 2.9 Å in the presence of B 0 AT1. The local resolution at the ACE2-RBD interface is 3.5 Å, allowing analysis of the detailed interactions between the RBD and the receptor.Similar to that for the SARS-CoV, the RBD of the 2019-nCoV is recognized by the extracellular peptidase domain (PD) of ACE2 mainly through polar residues.Pairwise comparison reveals a number of variations that may determine the different affinities between ACE2 and the RBDs from these two related viruses. author/funder. All rights reserved. No reuse allowed without permission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.