Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for SARS coronavirus (SARS-CoV) and the new coronavirus (SARS-CoV-2) that is causing the serious epidemic COVID-19. Here we present cryo-EM structures of full-length human ACE2, in the presence of a neutral amino acid transporter B 0 AT1, with or without the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) of SARS-CoV-2, both at an overall resolution of 2.9 Å, with a local resolution of 3.5 Å at the ACE2-RBD interface. The ACE2-B 0 AT1 complex is assembled as a dimer of heterodimers, with the Collectrin-like domain (CLD) of ACE2 mediating homo-dimerization. The RBD is recognized by the extracellular peptidase domain (PD) of ACE2 mainly through polar residues. These findings provide important insights to the molecular basis for coronavirus recognition and infection.
Developing therapeutics against SARS-CoV-2 could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein, but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from ten convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. An mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2, but does not bind the RBD. We defined the epitope of 4A8 as the N terminal domain (NTD) of the S protein by determining its cryo-EM structure in complex with the S protein to an overall resolution of 3.1 Angstrom and local resolution of 3.3 Angstrom for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.
Background and Purpose-Inflammatory response plays a critical role in propagating tissue damage after focal cerebral ischemia. CXCL12 is a key chemokine for leukocyte recruitment. However, the role of CXCL12 and its receptor CXCR4 in ischemia-induced inflammatory response is unclear. Here we use the pharmacological antagonist of CXCR4, AMD3100, to investigate the function of CXCL12/CXCR4 in regulating inflammatory response during acute ischemia. Methods-Adult male CD-1 mice (n=184) underwent permanent suture middle cerebral artery occlusion (MCAO). AMD3100 was injected for 3 days (1 mg/kg/day) after MCAO. Brain water content, infarct volume, neurological score, and myeloperoxidase (MPO) expression and activity were examined at 24, 48, and 72 hours after MCAO. Proinflammatory cytokine RNA and protein levels in brain tissue were measured by RT-PCR and enzyme linked immunosorbent assay. Results-Neurological score was greatly improved in AMD3100-treated mice compared with the control mice 3 days after MCAO (P<0.05). Brain edema-induced change of water content, IgG protein leakage, Evans blue extravasation, occludin, and ZO-1 expression in ipsilateral hemisphere were alleviated by acute treatment of AMD3100. MPO expression and activity revealed that AMD3100 profoundly reduced the number of MPO-positive cells in the ischemic region (P<0.05). It also attenuated proinflammatory cytokines including interleukin 6, tumor necrosis factor α, and interferon γ; their mRNA and protein levels changed accordingly compared with the controls (P<0.05). Conclusions-CXCR4 antagonist AMD3100 significantly suppressed inflammatory response and reduced blood-brain barrier disruption after MCAO. AMD3100 attenuated ischemia-induced acute inflammation by suppressing leukocyte migration and infiltration, in addition to reducing proinflammatory cytokine expression in the ischemic region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.