Dynamic characteristic of ball screw feed system in a milling machine is studied numerically in this work. In order to avoid the difficulty in determining the stiffness of rolling joints theoretically, a dynamic modeling method for analyzing the feed system is discussed, and a stiffness calculation method of the rolling joints is proposed based on the Hertz contact theory. Taking a 3-axis computer numerical control (CNC) milling machine set ermined as a research object, the stiffness of its fixed joint between the column and the body together with the stiffness parameters of the rolling joints is evaluated according to the Takashi Yoshimura method. Then, a finite element (FE) model is established for the machine tool. The correctness of the FE model and the stiffness calculation method of the rolling joints are validated by theoretical and experimental modal analysis results of the machine tool’s workbench. Under the two modeling methods of joints incorporating the stiffness parameters and rigid connection, a theoretical modal analysis is conducted for the CNC milling machine. The natural frequencies and modal shapes reveal that the joints’ dynamic characteristic has an important influence on the dynamic performance of a whole machine tool, especially for the case with natural frequency and higher modes.
Displacement-based seismic design methods support the performance-based seismic design philosophy known to be the most advanced seismic design theory. This paper explores one common type of irregular-continuous bridges and studies the prediction of their elastoplastic displacement demand, based on a new nonlinear static procedure. This benefits to achieve the operation of displacement-based seismic design. Three irregular-continuous bridges are analyzed to advance the equivalent SDOF system, build the capacity spectrum and the inelastic spectrum, and generate the new nonlinear static analysis. The proposed approach is used to simplify the prediction of elastoplastic displacement demand and is validated by parametric analysis. The new nonlinear static procedure is also used to achieve the displacement-based seismic design procedure. It is tested by an example to obtain results which show that after several combinations of the capacity spectrum (obtained by a pushover analysis) and the inelastic demand spectrum, the simplified displacement-based seismic design of the common irregular-continuous bridges can be achieved. By this design, the seismic damage on structures is effectively controlled.
Cone is one part of a packer. To understand the seal effectiveness of the packer, mechanical analysis must be made for it. The finite element model of packer is set up and packer minimum setting load changes are calculated under different climb angle of cone. Results show that reduce the cone angle of climb can make the packer sealing load significantly lower.The calculation results provide the theoretical basis for the real operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.