Background: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related burden and deaths, thus effective treatment strategies with lower side effects for NSCLC are urgently needed. To systematically analyze the mechanism of Bai He Gu Jin Tang (BHGJT) against NSCLC by network pharmacology and molecular docking. Methods: The active compounds of BHGJT were obtained by searching the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine and Encyclopaedia of Traditional Chinese Medicine. Search tool for interactions of chemicals was used for acquiring the targets of BHGJT. The component-target network was mapped by Cytoscape. NSCLC-related genes were obtained by searching Genecards, DrugBank and Therapeutic Target Database. The protein-protein interaction network of intersection targets was established based on Search Tool for Recurring Instances of Neighboring Genes (STRING), and further, the therapeutic core targets were selected by topological parameters. The hub targets were transmitted to Database for Annotation, Visualization and Integrated Discovery for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, AutoDock Vina and MglTools were employed for molecular docking validation. Results: Two hundred fifty-six compounds and 237 putative targets of BHGJT-related active compounds as well as 1721potential targets of NSCLC were retrieved. Network analysis showed that 8 active compounds of BHGJT including kaempferol, quercetin, luteolin, isorhamnetin, beta-sitosterol, stigmasterol, mairin and liquiritigenin as well as 15 hub targets such as AKR1B10 and AKR1C2 contribute to the treatment of BHGJT against NSCLC. GO functional enrichment analysis shows that BHGJT could regulate many biological processes, such as apoptotic process. Three modules of the endocrine related pathways including the inflammation, hypoxia related pathways as well as the other cancer related pathways based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis might explain the biological mechanisms of BHGJT in treating BHGJT. The results of molecular docking verified that AKR1B10 and AKR1C2 had the strongest binding activity with the 8 key compounds of NSCLC. Conclusion: Our study reveals the mechanism of BHGJT in treating NSCLC involving multiple components, multiple targets and multiple pathways. The present study laid an initial foundation for the subsequent research and clinical application of BHGJT and its active compounds against NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.