Elevator group supervisory control systems (EGSCSs) are designed so that the movement of several elevators in a building is controlled efficiently. The efficient control of EGSCSs using conventional control methods is very difficult due to its complexity, so it is becoming popular to introduce artificial intelligence (AI) technologies into EGSCSs in recent years. As a new approach, a graph-based evolutionary method named genetic network programming (GNP) has been applied to the EGSCSs, and its effectiveness is clarified. The GNP can introduce various a priori knowledge of the EGSCSs in its node functions easily, and can execute an efficient rule-based group supervisory control that is optimized in an evolutionary way. Meanwhile, double-deck elevator systems (DDESs) where two cages are connected in a shaft have been developed for the rising demand of more efficient transport of passengers in high-rise buildings. The DDESs have specific features due to the connection of cages and the need for comfortable riding; so its group supervisory control becomes more complex and requires more efficient group control systems than the conventional single-deck elevator systems (SDESs). In this paper, a new group supervisory control system for DDESs using GNP is proposed, and its optimization and performance evaluation are done through simulations. First, optimization of the GNP for DDSEs is executed. Second, the performance of the proposed method is evaluated by comparison with conventional methods, and the obtained control rules in GNP are studied. Finally, the reduction of space requirements compared with SDESs is confirmed.Index Terms-Double-deck elevator, elevator group supervisory control systems (EGSCS), evolutionary optimization, genetic network programming (GNP).
Abstract:We compare univariate L 1 interpolating splines calculated on 5-point windows, on 7-point windows and on global data sets using four different spline functionals, namely, ones based on the second derivative, the first derivative, the function value and the antiderivative. Computational results indicate that second-derivative-based 5-point-window L 1 splines preserve shape as well as or better than the other types of L 1 splines. To calculate second-derivative-based 5-point-window L 1 splines, we introduce an analysis-based, parallelizable algorithm. This algorithm is orders of magnitude faster than the previously widely used primal affine algorithm.
In this paper, univariate cubic L 1 interpolating splines based on the first derivative and on 5-point windows are introduced. Analytical results for minimizing the local spline functional on 5-point windows are presented and, based on these results, an efficient algorithm for calculating the spline coefficients is set up. It is shown that cubic L 1 splines based on the first derivative and on 5-point windows preserve linearity of the original data and avoid extraneous oscillation. Computational examples, including comparison with first-derivative-based cubic L 1 splines calculated by a primal affine algorithm and with second-derivative-based cubic L 1 splines, show the advantages of the first-derivative-based cubic L 1 splines calculated by the new algorithm.
Recently, Artificial Intelligence (AI) technology has been applied to many applications. As an extension of Genetic Algorithm (GA) and Genetic Programming (GP), Genetic Network Programming (GNP) has been proposed, whose gene is constructed by directed graphs. GNP can perform a global searching, but its evolving speed is not so high and its optimal solution is hard to obtain in some cases because of the lack of the exploitation ability of it. To alleviate this difficulty, we developed a hybrid algorithm that combines Genetic Network Programming (GNP) with Ant Colony Optimization (ACO) with Evaporation. Our goal is to introduce more exploitation mechanism into GNP. In this paper, we applied the proposed hybrid algorithm to a complicated real world problem, that is, Elevator Group Supervisory Control System (EGSCS). The simulation results showed the effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.