High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE) with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a 'smoothly broken power-law' model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs.
A tetraphenylethylene core-based small molecular acceptor with a unique 3D molecular structure is developed. Bulk-heterojunction blend films with a small feature size (≈20 nm) are obtained, which lead to non-fullerene organic solar cells (OSCs) with 5.5% power conversion efficiency. The work provides a new molecular design approach to efficient non-fullerene OSCs based on 3D-structured small-molecule acceptors.
A small-molecular acceptor, tetraphenylpyrazine-perylenediimide tetramer (TPPz-PDI ), which has a reduced extent of intramolecular twisting compared to two other small-molecular acceptors is designed. Benefiting from the lowest extent of intramolecular twisting, TPPz-PDI exhibits the highest aggregation tendency and electron mobility, and therefore achieves a highest power conversion efficiency of 7.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.