Choroidal neovascularization(CNV) is the most severe complication in Age-related macular degeneration(AMD) and the most common cause of irreversible blindness in the elderly in developed world. The aim of this study was to identify the effect of transforming growth factor-β(TGF-β) and Smad2/3-VEGF/TNF-α signaling on CNV angiopoiesis, and to explore TGF-β inhibitors on the development of CNV in a CNV mouse model. Fundus fluorescein angiography(FFA) was used to evaluate the laser-induced CNV formation. The histology of CNV lesions stained with hematoxylin-eosin(HE) was obtained. The immunofluorescent staining was performed to determine TGF-β protein expression. The expressions of TGF-β, phosphorylated Smad2/3, VEGF and TNF-α were determined by using Western blot analysis. The CNV areas were analyzed by using fluorescein stain on RPE/choroid-sclera flat mounts. We found the levels of TGF-β protein expression increasingly reached the peak till 3rd week during the CNV development. The protein levels of VEGF and TNF-α also increased significantly in CNV mice, which were inhibited by a synthetic TGF-β inhibitor LY2157299 or a natural TGF-β inhibitor Decorin. The phosphorylated Smad2/3 levels increased significantly in CNV mice, but this response was profoundly suppressed by the TGF-β inhibitors. Here we have demonstrated that TGF-β/Smad signaling plays an important role in Laser-induced CNV formation through down-regulation of VEGF and TNF-α expressions, suggesting TGF-β inhibitors may provide an alternative to traditional methods in wet AMD treatment.
We demonstrated that in vivo brain glioma in a mouse model using a continuouswave terahertz reflection imaging system, as well as the ex vivo fresh brain tissues in mouse model. The tumor regions of in vivo and ex vivo brain tissues can be well distinguished by THz intensity imaging at the frequency of 2.52THz. The THz images with high sensitivity correlated well with magnetic resonance, visual and hematoxylin and eosin stained images. Furthermore, the THz spectral difference between brain gliomas and normal brain tissues were obtained in the 0.6THz to 2.8THz range, where brain gliomas have the higher refractive indices and absorption coefficients, and their differences increase particularly in the high frequency range. These results suggest that THz imaging has great potential as an alternative method for the intraoperative label-free diagnosis of brain glioma in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.