Graphene sheets were stably dispersed in water by functionalization with sulfonated polyaniline (SPANI), and the composite film of SPANI-functionalized graphene showed improved electrochemical stability and enhanced electrocatalytic activity.
Complexation of cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP) and negatively charged chemically converted graphene (CCG) sheets was performed by simply mixing the diluted aqueous solutions of both components. During this process, a large bathochromic shift of porphyrin Soret band from 421 to 458 nm was observed, which is attributed to the flattening of TMPyP molecules induced by CCG through electrostatic and pi-pi stacking cooperative interactions. Furthermore, the coordination reaction between TMPyP and Cd(2+) ions was greatly accelerated from 20 h to 8 min under ambient conditions by introducing CCG sheets. On the basis of this phenomenon, we used the complex of TMPyP and CCG as an optical probe for rapid and selective detection of Cd(2+) ions in aqueous media.
The interest in floating photovoltaic (FPV) power plants has grown rapidly in recent years. In many established and emerging markets, such as Japan, South Korea, UK, China, and India, FPV is already considered as an attractive and viable option for PV deployment. In 2016, Singapore launched the world's largest FPV testbed, with a total installed capacity close to 1 MWp. This testbed aims to study the economic and technical feasibility, as well as the environmental impacts of deploying large‐scale FPV systems on inland fresh water reservoirs. The testbed currently consists of 8 systems, with different configurations in terms of PV modules, inverters, and floating structures. The field experience of deploying, operating, and maintaining these systems, together with a comparison of their performance and reliability offers highly valuable learning points for the FPV community. In this work, we present extensive, high‐quality field measurement data; compare operating environments on water and on a rooftop; analyze system performance of different FPV systems; and share some issues encountered. We found that FPV does confer some performance benefits, but best practices should also be established to avoid new issues and pitfalls associated with deploying PV on water.
In the present work, we apply the one-boson-exchange potential model to investigate the possibility of Yð2175Þ and ð2225Þ as bound states of à " Ãð 3 S 1 Þ and à " Ãð 1 S 0 Þ, respectively. We consider the effective potential from the pseudoscalar exchange and 0 exchange, the scalar exchange, and the vector ! exchange and exchange. The -and 0 -meson-exchange potential is a repulsive force for the state 1 S 0 and attractive for 3 S 1 . The results depend very sensitively on the cutoff parameter of the ! exchange (à ! ) and least sensitively on that of the exchange (à ). Our result suggests the possible interpretation of Yð2175Þ and ð2225Þ as the bound states of à " Ãð 3 S 1 Þ and à " Ãð 1 S 0 Þ, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.