Noise reduction (NR) is a necessary front-end in many audio applications for improving signal quality. It was shown that sparsity-promoting sensor selection potentially makes a trade-off between energy consumption and NR performance, which is rather important for large-scale wireless acoustic sensor networks (WASNs), where many sensors contribute negligibly to NR but energy consumption affects the lifetime of WASNs. This paper presents a sensor selection approach for beamforming-based NR by minimizing the total energy consumption and constraining the output noise variance. Motivated by the optimal semi-definite programming (SDP) solution and the utility-based method, we propose three low-complexity selection metrics: weighted utility, gradient, and weighted input signal-to-noise ratio (SNR). It is shown that the proposed weighted utility and gradient-based methods are near-optimal in performance but much faster than the SDP-based method, and the weighted SNR method has the lowest time complexity with a tiny performance sacrifice. Numerical results using a simulated WASN validate the superiority of the proposed approaches over conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.