With the growing popularity and usage of online social media services, people now have accounts (some times several) on multiple and diverse services like Facebook, LinkedIn, Twitter and YouTube. Publicly available information can be used to create a digital footprint of any user using these social media services. Generating such digital footprints can be very useful for personalization, profile management, detecting malicious behavior of users. A very important application of analyzing users' online digital footprints is to protect users from potential privacy and security risks arising from the huge publicly available user information. We extracted information about user identities on different social networks through Social Graph API, FriendFeed, and Profilactic; we collated our own dataset to create the digital footprints of the users. We used username, display name, description, location, profile image, and number of connections to generate the digital footprints of the user. We applied context specific techniques (e.g. Jaro Winkler similarity, Wordnet based ontologies) to measure the similarity of the user profiles on different social networks. We specifically focused on Twitter and LinkedIn. In this paper, we present the analysis and results from applying automated classifiers for disambiguating profiles belonging to the same user from different social networks. UserID and Name were found to be the most discriminative features for disambiguating user profiles. Using the most promising set of features and similarity metrics, we achieved accuracy, precision and recall of 98%, 99%, and 96%, respectively.1
Little is known on how visual content affects the popularity on social networks, despite images being now ubiquitous on the Web, and currently accounting for a considerable fraction of all content shared. Existing art on image sharing focuses mainly on non-visual attributes. In this work we take a complementary approach, and investigate resharing from a mainly visual perspective. Two sets of visual features are proposed, encoding both aesthetical properties (brightness, contrast, sharpness, etc.), and semantical content (concepts represented by the images). We collected data from a large image-sharing service (Pinterest) and evaluated the predictive power of different features on popularity (number of reshares). We found that visual properties have low predictive power compared that of social cues. However, after factoring-out social influence, visual features show considerable predictive power, especially for images with higher exposure, with over 3:1 accuracy odds when classifying highly exposed images between very popular and unpopular.
Finding a relevant set of publications for a given topic of interest is a challenging problem. We propose a two-stage query-dependent approach for retrieving relevant papers given a keyword-based query. In the first stage, we utilize content similarity to select an initial seed set of publications; we then augment them by citation links weighted with information such as citation context relevance and age-based attenuation. In the second stage, we construct a multi-layer graph that expands the publications subgraph by including links to the authors, venues, and keywords. This allows us to return recommendations that are both highly authoritative, and also textually related to the query. We show that our staged approach gives superior results on three different benchmark query sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.