Background:Down syndrome is known to cause premature aging in several organ systems. However, it remains unclear whether this aging effect also affects the structure and function of the large arterial trunks. In this controlled study, the possibility of changes in the large arteries due to aging was evaluated in patients with Down syndrome.Methods:Eighty-two subjects of both genders were selected. The Down syndrome group had 41 active subjects consisting of 19 males and 22 females (mean age 21 ± 1, range 13–42 years) without cardiovascular complications and who did not use vasoactive drugs. The control group consisted of 41 healthy individuals without trisomy 21 of the same gender and age as the Down syndrome group and who did not use vasoactive medication. Carotid–femoral pulse wave velocity was obtained as an index of aortic stiffness using an automatic noninvasive method.Results:Individuals with Down syndrome had significantly lower blood pressure than those in the control group. Systolic blood pressure for the Down syndrome group and control group was 106 ± 2 mmHg vs 117 ± 2 mmHg (P < 0.001), respectively; diastolic blood pressure was 66 ± 2 mmHg vs 77 ± 2 mmHg (P < 0.001); and mean arterial pressure was 80 ± 1 mmHg vs 90 ± 1 mmHg (P < 0.001). Only age and systolic blood pressure were shown to correlate significantly with pulse wave velocity, but the slopes of the linear regression curves of these two variables showed no significant difference between the two study groups. Pulse wave velocity, which was initially significantly lower in the Down syndrome group (7.51 ± 0.14 m/s vs 7.84 ± 0.12 m/s; P <0.05), was similar between the groups after systolic blood pressure adjustment (7.62 ± 0.13 m/s vs 7.73 ± 0.13 m/s).Conclusion:Despite evidence in the literature that patients with Down syndrome undergo early aging, this process does not seem to affect the large arterial trunks, given that values of carotid-femoral pulse wave velocity were similar in individuals with or without trisomy 21. Considering that Down syndrome presents with chronic hypotension, it is reasonable to propose that the prolonged reduction of arterial distending pressure may contribute to functional preservation of the arteries in patients with Down syndrome.
Background: Down syndrome is known to cause premature aging in several organ systems. However, it remains unclear whether this aging effect also affects the structure and function of the large arterial trunks. In this controlled study, the possibility of changes in the large arteries due to aging was evaluated in patients with Down syndrome. Methods: Eighty-two subjects of both genders were selected. The Down syndrome group had 41 active subjects consisting of 19 males and 22 females (mean age 21 ± 1, range 13-42 years) without cardiovascular complications and who did not use vasoactive drugs. The control group consisted of 41 healthy individuals without trisomy 21 of the same gender and age as the Down syndrome group and who did not use vasoactive medication. Carotid-femoral pulse wave velocity was obtained as an index of aortic stiffness using an automatic noninvasive method. Results: Individuals with Down syndrome had significantly lower blood pressure than those in the control group. Systolic blood pressure for the Down syndrome group and control group was 106 ± 2 mmHg vs 117 ± 2 mmHg (P , 0.001), respectively; diastolic blood pressure was 66 ± 2 mmHg vs 77 ± 2 mmHg (P , 0.001); and mean arterial pressure was 80 ± 1 mmHg vs 90 ± 1 mmHg (P , 0.001). Only age and systolic blood pressure were shown to correlate significantly with pulse wave velocity, but the slopes of the linear regression curves of these two variables showed no significant difference between the two study groups. Pulse wave velocity, which was initially significantly lower in the Down syndrome group (7.51 ± 0.14 m/s vs 7.84 ± 0.12 m/s; P , 0.05), was similar between the groups after systolic blood pressure adjustment (7.62 ± 0.13 m/s vs 7.73 ± 0.13 m/s). Conclusion: Despite evidence in the literature that patients with Down syndrome undergo early aging, this process does not seem to affect the large arterial trunks, given that values of carotid-femoral pulse wave velocity were similar in individuals with or without trisomy 21. Considering that Down syndrome presents with chronic hypotension, it is reasonable to propose that the prolonged reduction of arterial distending pressure may contribute to functional preservation of the arteries in patients with Down syndrome.
BACKGROUNDCOVID-19, the disease caused by the SARS-CoV-2, was initially observed with severe clinical manifestations mainly in individuals over 60 years of age and in those with comorbidities. Subsequently, children were diagnosed with SARS-CoV-2 infection and some of them have developed Kawasaki disease in a postinfectious phase. The objective of this study was to investigate the immunological aspects of patients with Kawasaki disease with or without COVID-19 infection. METHODSThis is a prospective, multicenter observational study in partnership with five Brazilian pediatric rheumatology services. Thirteen children and adolescents diagnosed with complete or incomplete Kawasaki disease were evaluated in the presence or absence of SARS-CoV-2 infection. An 8 mL-blood sample was collected into EDTA vial before starting intravenous immunoglobulin (IVIg) treatment. After 14 to 21 days of the first blood collection, a new blood sample collection was performed. The immunophenotyping of T and B cell was performing by flow cytometry. RESULTSThe characteristics of patients, clinical, laboratory and immunological data are described in Table 1. CONCLUSIONCOVID-19 positive children who develop Kawasaki disease show higher PD1 expression on CD4 T cells and CD8 T cells post IVIG than in those without evidence of COVID-19 infection, suggestive of immune exhaustion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.