Cloud platforms usually offer several types of Virtual Machines (VMs) with different guarantees in terms of availability and volatility, provisioning the same resource through multiple pricing models. For instance, in the Amazon EC2 cloud, the user pays per use for on-demand VMs while spot VMs are instances available at lower prices. However, a spot VM can be terminated or hibernated by EC2 at any moment. In this work, we propose the Hibernation-Aware Dynamic Scheduler (HADS) that schedules Bag-of-Tasks (BoT) applications with deadline constraints in both hibernation prone spots VMs and on-demand VMs. HADS aims at minimizing the monetary costs of executing BoT applications on Clouds ensuring that their deadlines are respected even in the presence of multiple hibernations. Results collected from experiments on Amazon EC2 VMs using synthetic applications and a NAS benchmark application show the effectiveness of HADS in terms of monetary costs when compared to on-demand VM only solutions.
Nowadays, cloud platforms usually offer several types of Virtual Machines (VMs) which have different guarantees in terms of availability and volatility, provisioning the same resource through multiple pricing models. For instance, in the Amazon EC2 cloud, the user pays per hour for on-demand VMs while spot VMs are unused instances available for a lower price. Despite the monetary advantages, a spot VM can be terminated or hibernated by EC2 at any moment. In this work, we propose the Hibernation-Aware Dynamic Scheduler (HADS), to schedule applications composed of independent tasks (bag-of-tasks) with deadline constraints in both hibernation-prone spot VMs (for cost sake) and on-demand VMs. We also consider the problem of temporal failures, that occurs when a spot VM hibernates, and does not resume within a time that guarantees the application's deadline. Our dynamic scheduling approach aims at minimizing the monetary costs of bag-of-tasks applications execution, respecting its deadline even in the presence of hibernation. It is also able to avoid temporal failures, by using task migration and work-stealing techniques. Experimental results with real executions using Amazon EC2 VMs confirm the effectiveness of our scheduling when compared with on-demand VM only based approaches, in terms of monetary costs and execution times. It is also shown that our strategy can tolerate temporal failures.
Cloud platforms have emerged as a prominent environment to execute high performance computing (HPC) applications providing on-demand resources as well as scalability. They usually offer different classes of Virtual Machines (VMs) which ensure different guarantees in terms of availability and volatility, provisioning the same resource through multiple pricing models. For instance, in Amazon EC2 cloud, the user pays per hour for on-demand VMs while spot VMs are unused instances available for lower price. Despite the monetary advantages, a spot VM can be terminated, stopped, or hibernated by EC2 at any moment.Using both hibernation-prone spot VMs (for cost sake) and on-demand VMs, we propose in this paper a static scheduling for HPC applications which are composed by independent tasks (bag-of-task) with deadline constraints. However, if a spot VM hibernates and it does not resume within a time which guarantees the application's deadline, a temporal failure takes place. Our scheduling, thus, aims at minimizing monetary costs of bagof-tasks applications in EC2 cloud, respecting its deadline and avoiding temporal failures. To this end, our algorithm statically creates two scheduling maps: (i) the first one contains, for each task, its starting time and on which VM (i.e., an available spot or on-demand VM with the current lowest price) the task should execute; (ii) the second one contains, for each task allocated on a VM spot in the first map, its starting time and on which on-demand VM it should be executed to meet the application deadline in order to avoid temporal failures. The latter will be used whenever the hibernation period of a spot VM exceeds a time limit.Performance results from simulation with task execution traces, configuration of Amazon EC2 VM classes, and VMs market history confirm the effectiveness of our scheduling and that it tolerates temporal failures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.