As a classic statistical model of 3D facial shape and texture, 3D Morphable Model (3DMM) is widely used in facial analysis, e.g., model fitting, image synthesis. Conventional 3DMM is learned from a set of well-controlled 2D face images with associated 3D face scans, and represented by two sets of PCA basis functions. Due to the type and amount of training data, as well as the linear bases, the representation power of 3DMM can be limited. To address these problems, this paper proposes an innovative framework to learn a nonlinear 3DMM model from a large set of unconstrained face images, without collecting 3D face scans. Specifically, given a face image as input, a network encoder estimates the projection, shape and texture parameters. Two decoders serve as the nonlinear 3DMM to map from the shape and texture parameters to the 3D shape and texture, respectively. With the projection parameter, 3D shape, and texture, a novel analytically-differentiable rendering layer is designed to reconstruct the original input face. The entire network is end-to-end trainable with only weak supervision. We demonstrate the superior representation power of our nonlinear 3DMM over its linear counterpart, and its contribution to face alignment and 3D reconstruction. 1
Gait, the walking pattern of individuals, is one of the most important biometrics modalities. Most of the existing gait recognition methods take silhouettes or articulated body models as the gait features. These methods suffer from degraded recognition performance when handling confounding variables, such as clothing, carrying and view angle. To remedy this issue, we propose a novel AutoEncoder framework to explicitly disentangle pose and appearance features from RGB imagery and the LSTM-based integration of pose features over time produces the gait feature. In addition, we collect a Frontal-View Gait (FVG) dataset to focus on gait recognition from frontal-view walking, which is a challenging problem since it contains minimal gait cues compared to other views. FVG also includes other important variations, e.g., walking speed, carrying, and clothing. With extensive experiments on CASIA-B, USF and FVG datasets, our method demonstrates superior performance to the state of the arts quantitatively, the ability of feature disentanglement qualitatively, and promising computational efficiency.
The large pose discrepancy between two face images is one of the fundamental challenges in automatic face recognition. Conventional approaches to pose-invariant face recognition either perform face frontalization on, or learn a pose-invariant representation from, a non-frontal face image. We argue that it is more desirable to perform both tasks jointly to allow them to leverage each other. To this end, this paper proposes a Disentangled Representation learning-Generative Adversarial Network (DR-GAN) with three distinct novelties. First, the encoder-decoder structure of the generator enables DR-GAN to learn a representation that is both generative and discriminative, which can be used for face image synthesis and pose-invariant face recognition. Second, this representation is explicitly disentangled from other face variations such as pose, through the pose code provided to the decoder and pose estimation in the discriminator. Third, DR-GAN can take one or multiple images as the input, and generate one unified identity representation along with an arbitrary number of synthetic face images. Extensive quantitative and qualitative evaluation on a number of controlled and in-the-wild databases demonstrate the superiority of DR-GAN over the state of the art in both learning representations and rotating large-pose face images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.