The impact of phytopathogenic microorganisms in several crops causes significant losses in agrifood industry, spoilage throughout food chain and storage. Nanoparticles and plant extracts have been highlighted by their antimicrobial properties applied in food packaging, agriculture, drug delivery systems and other medical approaches. Over the past few years, this group have studied the application of ZnO nanoparticles and agroindustrial wastes in edible food coatings/films. This study aimed to evaluate active characteristics from the extract of seriguela processing wastes and nanoZnO regarding to their inhibitory activity against bacterial pathogenicity and virulence systems TTSS (Type Three Secretion System) and QS (Quorum Sensing) for Pseudomonas savastanoi. Also, antibacterial action (inhibition area) against species of Curtobacterium, Clavibacter, E. coli, Xanthomonas and Serratia, and antifungal against Botrytis cinerea (reduction in colony size). The 60% extract inhibited the activation of QS and TTSS system in 20.26% and 13.54%, respectively; while nanoZnO at 3% reduced 46.77% QS and increased 302.88% TTSS. Extract without dilution inhibited the growth of Clavibacter michiganensis pv michiganensis (Gram-positive) and Xanthomonas phaseoli (Gram-negative), inhibitory zone of 94.25 mm2 and 452.39 mm2 respectively. The latter also being inhibited by nanoZnO 1 and 2% (138.23 mm2) and 3% (275.67 mm2). Pure extract inhibited 17.38% growth of fungal colony and nanoZnO (1 and 3%) in 33.08%. Finally, the active agents studied showed to be promising in the prevention of phytopathogenic diseases and consequently economic losses, food films/coatings and the extract as a biopesticide, reducing the environmental impact.
Besides practical and convenient products, the consumer has increasingly demanded safe and tasty foods, arousing interest in natural additives. This work aimed to develop chitosan films added with peppermint (Mentha piperita L.) hydroethanolic extract (EHH) for Briseé dough conservation. Films were prepared with chitosan (1% w/v) added with four EHH concentrations: 2.5% (EH2.5), 5% (EH5), 10% (EH10) and 25% (EH25). EH5 and EH10 films showed better antioxidant activity and bioactives retention, so were characterized by visual analysis, thickness, mechanical and optical properties, moisture, density, water vapour permeability, swelling, solubility. Moreover, by antimicrobial action against S. aureus and Escherichia coli, whose results showed they did not exhibit any activity against studied bacteria. For selected films, EHH addition improved mechanical, barrier and optical properties. They were used to pack pieces of dough, then results for DPPH and TBARS showed these films were effective in delaying lipid oxidation over ten days of storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.