Nanomanipulation of matter to create responsive, ordered materials still remains extremely challenging. Supramolecular chemistry has inspired new strategies by which such nanomaterials can be synthesized step by step by exploiting the self-recognition properties of molecules. In this work, the ring-shaped architecture of the 2-Cys peroxiredoxin I protein from Schistosoma mansoni, engineered to have metal ion-binding sites, is used as a template to build up 1D nanoscopic structures through metal-induced self-assembly. Chromatographic and microscopic analyses demonstrate the ability of the protein rings to stack directionally upon interaction with divalent metal ions and form well-defined nanotubes by exploiting the intrinsic recognition properties of the ring surfaces. Taking advantage of such behavior, the rings are then used to capture colloidal Ni(2+)-functionalized ultrasmall gold nanoparticles and arrange them into 1D arrays through stacking into peapod-like complexes. Finally, as the formation of such nano-peapods strictly depends on nanoparticle dimensions, the peroxiredoxin template is used as a colloidal cut-off device to sort by size the encapsulated nanoparticles. These results open up possibilities in developing Prx-based methods to synthesize new advanced functional materials.
SummaryThe present study evaluates sequence conservation in the gene coding for nitrite reductase (aniA) and AniA expression from a panel of Neisseria meningitidis isolates. Sequence analysis of the coding region in 19 disease-associated and 4 carrier strains notwithstanding a high degree of sequence similarity showed a number of nucleotide changes, some of which possibly resulted in premature translation termination or function loss. In particular, in one disease-associated strain a 9-residues insertion was found to be located close to the type I Cu-site and a catalytic histidine at position 280 was mutated into a leucine. In two strains from carriers, a sequence corresponding to a portion of a transposase gene within the aniA was also found. The AniA protein was always expressed, except for these two carriers strains and for other two strains in which the presence of the premature stop codons was recognized. The biochemical properties of the cloned soluble domain of the enzyme (sAniA) from N. meningitidis reference MC58 strain and from a clinical invasive isolate were studied. In particular, biochemical analysis of sAniA from MC58 demonstrated a clear dependence of its catalytic activity upon acidification, while the clinical isolatederived sAniA was not functional. Thus, the results obtained suggest that the presence of a conserved and functional aniA gene is not essential for meningococcal survival.
BackgroundAntibodies raised against selected antigens over-expressed at the cell surface of malignant cells have been chemically conjugated to protein toxin domains to obtain immunotoxins (ITs) able to selectively kill cancer cells. Since latest generation immunotoxins are composed of a toxic domain genetically fused to antibody fragment(s) which confer on the IT target selective specificity, we rescued from the hydridoma 4KB128, a recombinant single-chain variable fragment (scFv) targeting CD22, a marker antigen expressed by B-lineage leukaemias and lymphomas. We constructed several ITs using two enzymatic toxins both able to block protein translation, one of bacterial origin (a truncated version of Pseudomonas exotoxin A, PE40) endowed with EF-2 ADP-ribosylation activity, the other being the plant ribosome-inactivating protein saporin, able to specifically depurinate 23/26/28S ribosomal RNA. PE40 was selected because it has been widely used for the construction of recombinant ITs that have already undergone evaluation in clinical trials. Saporin has also been evaluated clinically and has recently been expressed successfully at high levels in a Pichia pastoris expression system. The aim of the present study was to evaluate optimal microbial expression of various IT formats.ResultsAn anti-CD22 scFv termed 4KB was obtained which showed the expected binding activity which was also internalized by CD22+ target cells and was also competed for by the parental monoclonal CD22 antibody. Several fusion constructs were designed and expressed either in E. coli or in Pichia pastoris and the resulting fusion proteins affinity-purified. Protein synthesis inhibition assays were performed on CD22+ human Daudi cells and showed that the selected ITs were active, having IC50 values (concentration inhibiting protein synthesis by 50% relative to controls) in the nanomolar range.ConclusionsWe undertook a systematic comparison between the performance of the different fusion constructs, with respect to yields in E. coli or P. pastoris expression systems and also with regard to each constructs specific killing efficacy. Our results confirm that E. coli is the system of choice for the expression of recombinant fusion toxins of bacterial origin whereas we further demonstrate that saporin-based ITs are best expressed and recovered from P. pastoris cultures after yeast codon-usage optimization.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-015-0202-z) contains supplementary material, which is available to authorized users.
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ~12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A (IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternative intracellular pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.