We consider properties and applications of a sequence of polynomials known as complementary Romanovski-Routh polynomials (CRR polynomials for short). These polynomials, which follow from the Romanovski-Routh polynomials or complexified Jacobi polynomials, are known to be useful objects in the studies of the one-dimensional Schrödinger equation and also the wave functions of quarks. One of the main results of this paper is to show how the CRR-polynomials are related to a special class of orthogonal polynomials on the unit circle. As another main result, we have established their connection to a class of functions which are related to a subfamily of Whittaker functions that includes those associated with the Bessel functions and the regular Coulomb wave functions. An electrostatic interpretation for the zeros of CRR-polynomials is also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.