Multifunctional capability, flexible design, rugged lightweight construction and self-powered operation are desired attributes for electronics that directly interface with the human body or with advanced robotic systems. For these applications, piezoelectric materials, in forms that offer the ability to bend and stretch, are attractive for pressure/force sensors and mechanical energy harvesters. Here, we introduce a large area, flexible piezoelectric material that consists of sheets of electrospun fibres of the polymer poly(vinylidenefluoride-co-trifluoroethylene). The flow and mechanical conditions associated with the spinning process yield free-standing, three-dimensional architectures of aligned arrangements of such fibres, in which the polymer chains adopt strongly preferential orientations. The resulting material offers exceptional piezoelectric characteristics, to enable ultra-high sensitivity for measuring pressure, even at exceptionally small values (0.1 Pa). Quantitative analysis provides detailed insights into the pressure sensing mechanisms, and establishes engineering design rules. Potential applications range from self-powered micro-mechanical elements, to self-balancing robots and sensitive impact detectors.
Electrospun nanofibers are extensively studied and their potential applications are largely demonstrated. Today, electrospinning equipment and technological solutions, and electrospun materials are rapidly moving to commercialization. Dedicated companies supply laboratory and industrial‐scale components and apparatus for electrospinning, and others commercialize electrospun products. This paper focuses on relevant technological approaches developed by research, which show perspectives for scaling‐up and for fulfilling requirements of industrial production in terms of throughput, accuracy, and functionality of the realized nanofibers. A critical analysis is provided about technological weakness and strength points in combination with expected challenges from the market. magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.