Recombinant factor VIII is one of the most complex mammalian proteins and a biotechnology venture required for the treatment of hemophilia A. The complexity of the protein, post-translational modifications and limitations of expression elements make the production of active recombinant FVIII a challenge. Here we report the production of biologically active Factor VIII in two different cell lines, CHO and HepG2, by transient transfection. Two expression vectors based on the CMV promoter were used: one harboring CMV Intron A (InA) and the other without it. To bypass difficulties in secretion, we also studied the influence of co-expression of the human splice isoform of the XBP1 gene. We report the production of recombinant FVIII possessing bioengineered FVIII heavy and light chains, linked by a minimal B domain. In our study, HepG2, a human hepatocyte cell line, expressed Factor VIII ten-fold more than a CHO cell line, and in HepG2 cells, the expression of XBP1 improved Factor VIII activity. For CHO cells, expression was improved by the presence of InA, but no further improvement was noted with XBP1 co-expression. These data suggest that the minimal B domain rFVIII preserves Factor VIII biological activity and that different expression elements can be used to improve its production.
The expression enhancement by cytomegalovirus promoter and different intron A (IA) variants were evaluated in CHO-K1, HepG2, HEK-293 and COS-7 cells by assessing the levels of luciferase activity. This data along with mRNA levels measurement indicated that the construct harboring an IA variant with a 200-nucleotide deletion (Δ200) had the greatest impact on increasing luciferase expression among all constructs evaluated. Based on these results, we redesigned pCMV-IA variants and cloned them into plasmids expressing a humanized antibody. These plasmids were then used to transfect CHO-K1 cells. Production of the antibody was not augmented with the Δ200 promoter variant. The 600-nucleotide deletion (Δ600) and whole IA promoter variants expressed similar levels of the recombinant protein. These data indicate that the IA-based enhanced expression of transgenes depends on a small region within the intron.
Left-handed Z-DNA is a physiologically unstable DNA conformation, and its existence in vivo can be attributed to localized torsional distress. Despite evidence for the existence of Z-DNA in vivo, its precise role in the control of gene expression is not fully understood. Here, an in vivo probe based on an anti-Z-DNA intrabody is proposed for native Z-DNA detection. The probe was used for chromatin immunoprecipitation of potential Z-DNA-forming sequences in the human genome. One of the isolated putative Z-DNA-forming sequences was cloned upstream of a reporter gene expression cassette under control of the CMV promoter. The reporter gene encoded an antibody fragment fused to GFP. Transient co-transfection of this vector along with the Z-probe coding vector improved reporter gene expression. This improvement was demonstrated by measuring reporter gene mRNA and protein levels and the amount of fluorescence in co-transfected CHO-K1 cells. These results suggest that the presence of the anti-Z-DNA intrabody can interfere with a Z-DNA-containing reporter gene expression. Therefore, this in vivo probe for the detection of Z-DNA could be used for global correlation of Z-DNA-forming sequences and gene expression regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.