Several plant-related factors can influence the diversity of gall-inducing species communities. In the present study we performed an inventory of gall-inducing arthropods and we tested if the plant species richness and the abundance of super-host plants (Copaifera oblongifolia) influenced positively in the diversity of gall-inducing arthropod species. The study was realized in an area of Neotropical savanna (cerrado sensu stricto) in the Environmental Protection Area (EPA) of Rio Pandeiros, Minas Gerais, Brazil. Host-plant species and gall-inducing arthropods were sampled in 18 10 × 10 m plots distributed in the vegetation. In total we found 40 arthropod gall morphotypes, distributed on 17 botanical families and 29 plant species. Cecidomyiidae (Diptera) induced the most arthropod galls (85%), and the plant family Fabaceae had the greatest richness of gall morphotypes (16). The plant species Copaifera oblongifolia and Andira humilis (Fabaceae) were the most important host species with five and three morphotypes, respectively. Galling species richness was not affected by none of explanatory variables (plant species richness and abundance of super-host plants). On the other hand, galling species per plant species was negatively affected by plant species richness and positively affected by abundance of super-host plants. This is the first study of arthropod-induced galls conducted in EPA of Rio Pandeiros, Brazil. Our results corroborate previous studies that highlight the importance of super-host plants for galling arthropod diversity on a local scale.
Phytophagous mites represent a diverse group of Arachnida, however, the patterns of their interactions with their host plants remain little explored. Herein we compare structural patterns of plant-phytophagous mite networks of forest and open habitats in Brazil. We adopted network size, network connectance and network modularity to characterize plant-mite network structure. We analyzed 11 plant-mite networks composed by 106 mite species, 96 host-plant species, and 342 distinct interactions. Tetranychidae and Eriophyidae were the most speciose mite families while Euphorbiaceae and Fabaceae were the most relevant host-plant families, hosting 67 and 16 mite species, respectively. We did not find any differences in network size and modularity between biomes and habitat types. However, network connectance was lower for open vegetation habitats than for forest habitat networks. Open areas can constrain the selection of defensive traits by plant species, leading phytophagous mites to consume plant species more selectively, which generates low connectivity in networks of these environments. The small number of plant-mite networks described here highlights the need for more efforts to increase knowledge about plant mites in Brazilian natural vegetation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.