Analysis of recombination between loci (linkage analysis) has been a cornerstone of human genetic research, enabling investigators to localize and, ultimately, identify genetic loci. However, despite these efforts little is known about patterns of meiotic exchange in human germ cells or the mechanisms that control these patterns. Using recently developed immunofluorescence methodology to examine exchanges in human spermatocytes, we have identified remarkable variation in the rate of recombination within and among individuals. Subsequent analyses indicate that, in humans and mice, this variation is linked to differences in the length of the synaptonemal complex. Thus, at least in mammals, a physical structure, the synaptonemal complex, reflects genetic rather than physical distance.
The formation of the synaptonemal complex (SC) is a crucial early step in the meiotic process, but relatively little is known about the establishment of the human SC. Accordingly, we recently initiated a study of synapsis in the human male, combining immunofluorescence and fluorescence in situ hybridization methodologies to analyze prophase spermatocytes from a series of control individuals. Our results indicate that synapsis is a tightly regulated process, with relatively little variation among individuals. On nonacrocentric chromosomes, there are two synaptic initiation sites, one on the distal short arm and one on the distal long arm, whereas acrocentric chromosomes exhibit a single site on the distal long arm. For both types of chromosomes, synapsis then proceeds toward the centromere, with little evidence that specific p- or q-arm sequences affect the process. However, the centromere appears to have an inhibitory effect on synapsis--that is, when one arm of a nonacrocentric chromosome is "zippered up" before the other, the centromere acts as a barrier to further movement from that arm.
Our results demonstrate that slight alterations in in-vitro conditions may have a considerable impact on the genetic quality of assisted reproductive technology-derived embryos and suggest that the genetic quality of embryos should be a fundamental concern in the development of new culture systems for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.