Numerous studies have shown that subinhibitory concentrations of antimicrobials can alter bacterial virulence factors. This study evaluates motility and biofilm formation by H. pylori 43504 grown in subinhibitory concentrations of amoxicillin (AMX), clarithromycin (CLA), or tetracycline (TET). For the swimming and swarming motility assays, H. pylori 43504 suspensions were prepared with the strain alone or with the strain in AMX, CLA, or TET at ½ MIC. Next, the media were incubated at 37 ºC, under microaerophilia. To assess biofilm formation in the presence of one of the antimicrobials at subinhibitory antimicrobial concentrations, bacterial suspensions (109 CFU/mL) were prepared in 2.5% FBS containing AMX, CLA, or TET at ½ MIC. After incubation for 10 days, H. pylori 43504 grown in medium containing AMX, CLA, or TET at ½ MIC presented greater swimming motility and lower swarming motility than the non-treated strain. H. pylori 43504 grown in medium containing AMX, CLA, or TET at ½ MIC showed stronger biofilm production than the non-treated strain. Our results showed that AMX, CLA, or TET at subinhibitory concentrations favors H. pylori 43504 swimming motility and biofilm formation after incubation for 3 days. This may have clinical consequences and make the microorganism difficult to eradicate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.