Transcriptional factor NRF2 is an emerging tool in reviewing mechanistic behavior of drug-specific injury pathways. Drug-induced liver injury (DILI) represents a major clinical concern that often manifests oxidative stress and cell death. Despite the pivotal role of NRF2 pathway in liver pathologies, it is questioned whether NRF2 activation or regulatory efficiency could be hindered in by the severity of DILI and progression of cell death. In this study, we evaluate NRF2 as a biomarker to DILI in comparison to severity of injury as well as explore stress mediating factors affecting Nrf2 expression. In vivo DILI model was established in C57BL/6 mice by acetaminophen (APAP) at different toxic doses, confirmed by dose-dependent liver pathological changes and accompanied with in vitro time- and dose-dependent depletion of GSH and SOD in isolated primary mouse hepatocytes. Increase in liver NRF2 translocation and cytosolic content was observed in 70 mg/kg APAP-treated mice. At this subtoxic dose, liver Nrf2 transcription was increased in mice by 18.3-fold, a prominent downregulation was seen in ARE (antioxidant response element) genes; Hmox1, Nqo1 and Glcm, and apoptotic Bcl2 regulating genes. In addition, upregulation in necrosis inducer Parp2 was associated to downregulation in Hmgb1. Collectively, expression of genes related to cell survival were regulated at mild APAP hepatotoxicity. By increasing APAP dose, hemorrhagic necrosis and impaired genetic transcription in both Nrf2 and several other genes were evident. In conclusion, NRF2/ARE system and cell death modulation is halted by the increase of chemical stress and found directly associated with DILI severity.
Aims Despite a decline in tobacco smoking in the developed world, the developing world has witnessed an increase in such activity over recent years. An increase in antibiotic resistance has accompanied this increase in tobacco use, and we suggest that the two may be linked. This study aims to investigate the effect of cigarette smoke exposure on bacterial virulence and susceptibility to antibiotics. Methods and Results Pseudomonas aeruginosa passaged in the presence of Cigarette Smoke Condensate (CSC) exhibited reduced susceptibility towards Amikacin (p = 0.02), Tobramycin (p = 0.03) and Aztreonam (p = 0.007) and was accompanied by changes in growth dynamics as exposure to CSC increased. These observed changes persisted after passaging bacteria in CSC‐free medium for 10 days. The genotoxicity of CSC on P. aeruginosa was evaluated by the standard Comet assay, which demonstrated DNA damage in the P. aeruginosa genome in Passage 15 compared to the CSC‐unexposed cells. Gene expression analysis on selected virulence and quorum sensing genes showed that both flagellar (fliC and fleR) and quorum sensing (lasI/R and rhII) genes were significantly up‐regulated in Passage 15. Conclusions Results confirm the genotoxic effect of cigarette smoke manifested in an increased antibiotic resistance, coupled with increased bacterial virulence Significance and Impact of Study This study is the first to elucidate a clear link between tobacco smoke residues and both increases in antibiotic resistance and the up‐regulation of bacterial virulence markers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.