This study presents a novel blind source extraction of a noisy mixture using a class of parallel linear predictor filters. Analysis of a noisy mixture equation is carried out to address new autoregressive source signal model based on the covariance matrix of the whitened data. A method of interchanging the rules of filter inputs is proposed such that this matrix becomes the filter input while the estimated source signals are considered as the parallel filter coefficients. As the matrix has unity norm and unity eigenvalues, the filter becomes independent on the mixture signal norm and eigenvalues variations, thus solving drastically the ambiguity due to the dependency of the filter on the mixture power levels if the mixture is considered as the filter input. Furthermore, the unity eigenvalues of the matrix result in a very fast convergence in two iterations. Simulation results show that the model is capable of extracting the unknown source signals and removing noise when the input signal-to-noise ratio is varied from −20 to 80 dB.
This paper presents a new non-invasive deterministic algorithm of extracting the fetal Electrocardiogram (FECG) signal based on a new null space idempotent transformation matrix (NSITM). The mixture matrix is used to compute the ITM. Then, the fetal ECG (FECG) and maternal ECG (MECG) signals are extracted from the null space of the ITM. Next, MECG and FECG peaks detection, control logic, and adaptive comb filter are used to remove the unwanted MECG component from the raw FECG signal, thus extracting a clean FECG signal. The visual results from Daisy and Physionet real databases indicate that the proposed algorithm is effective in extracting the FECG signal, which can be compared with principal component analysis (PCA), fast independent component analysis (FastICA), and parallel linear predictor (PLP) filter algorithms. Results from Physionet synthesized ECG data show considerable improvement in extraction performances over other algorithms used in this work, considering different additive signal-to-noise ratio (SNR) increasing from 0 dB to 12 dB, and considering different fetal-to-maternal SNR increasing from −30 dB to 0 dB. The FECG detection of the NSITM is evaluated using statistical measures and results show considerable improvement in the sensitivity (SE), the accuracy (ACC), and the positive predictive value (PPV), as compared with other algorithms. The study demonstrated that the NSITM is a feasible algorithm for FECG extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.