Cuneiform language is an old language that was invented by the people of Sumerian nation. It is an essential language for many archeologists. Especially who are interested in studying and investigating the old nations of Iraq. Dealing with this type of language usually requires specialist to translate its symbols, which are basically forms of nail shapes. This study presents a new approach to translate the cuneiform writing by employing artificial neural network (ANN) technique. Effectively, multi-layer perceptron (MLP) neural network has been adapted for translating the Sumerian cuneiform symbol images to their corresponding English letters. This work has been successfully established and it attained 100%.
In this paper, we consider a palm print characteristic which has taken wide attentions in recent studies. We focused on palm print verification problem by designing a deep network called a palm convolutional neural network (PCNN). This network is adapted to deal with two-dimensional palm print images. It is carefully designed and implemented for palm print data. Palm prints from the Hong Kong Polytechnic University Contact-free (PolyUC) 3D/2D hand images dataset are applied and evaluated. The results have reached the accuracy of 97.67%, this performance is superior and it shows that our proposed method is efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.