Extracellular DNA, also called cell-free DNA, released from dying cells or activated immune cells can be recognized by the immune system as a danger signal causing or enhancing inflammation. The cleavage of extracellular DNA is crucial for limiting the inflammatory response and maintaining homeostasis. Deoxyribonucleases (DNases) as enzymes that degrade DNA are hypothesized to play a key role in this process as a determinant of the variable concentration of extracellular DNA. DNases are divided into two families—DNase I and DNase II, according to their biochemical and biological properties as well as the tissue-specific production. Studies have shown that low DNase activity is both, a biomarker and a pathogenic factor in systemic lupus erythematosus. Interventional experiments proved that administration of exogenous DNase has beneficial effects in inflammatory diseases. Recombinant human DNase reduces mucus viscosity in lungs and is used for the treatment of patients with cystic fibrosis. This review summarizes the currently available published data about DNases, their activity as a potential biomarker and methods used for their assessment. An overview of the experiments with systemic administration of DNase is also included. Whether low-plasma DNase activity is involved in the etiopathogenesis of diseases remains unknown and needs to be elucidated.
Current diagnostic methods of acute kidney injury (AKI) have limited sensitivity and specificity. Tissue injury has been linked to an increase in the concentrations of extracellular DNA (ecDNA) in plasma. A rapid turnover of ecDNA in the circulation makes it a potential marker with high sensitivity. This study aimed to analyze the concentration of ecDNA in plasma in animal models of AKI. Three different fractions of ecDNA were measured—total ecDNA was assessed fluorometrically, while nuclear ecDNA (ncDNA) and mitochondrial DNA (mtDNA) were analyzed using quantitative real-time PCR. AKI was induced using four different murine models of AKI-bilateral ureteral obstruction (BUO), glycerol-induced AKI (GLY), ischemia–reperfusion injury (IRI) and bilateral nephrectomy (BNx). Total ecDNA was significantly higher in BUO (p < 0.05) and GLY (p < 0.05) compared to the respective control groups. ncDNA was significantly higher in BUO (p < 0.05) compared to SHAM. No significant differences in the concentrations of mtDNA were found between the groups. The plasma concentrations of different fractions of ecDNA are dependent on the mechanism of induction of AKI and warrant further investigation as potential surrogate markers of AKI.
Obesity is associated with chronic low-grade inflammation that eventually leads to metabolic complications. Extracellular DNA (ecDNA) is a damage-associated molecular pattern. Extracellular mitochondrial DNA can activate innate immunity. We hypothesized that ecDNA, especially of mitochondrial origin could be associated with components of the metabolic syndrome in young healthy probands. In a cross-sectional study healthy adolescents (n=1249) provided blood samples. Anthropometric data, blood pressure and blood counts were assessed. In addition, biochemical analysis of sera or plasma was conducted including the quantification of advanced oxidation protein products (AOPP) as a marker of oxidative stress induced by neutrophil or monocyte activation. Plasma ecDNA was isolated and measured using fluorometry. Nuclear and mitochondrial DNA were quantified using real time PCR. Males had higher total plasma ecDNA (15 (11-21) vs 11 (8-17) ng/ml; median (IQR)), nuclear (1760 (956-3273) vs 1153 (600-2292) GE/ml) and mitochondrial DNA (37181 (14836-90896) vs 30089 (12587-72286) GE/ml). EcDNA correlated positively with the continuous metabolic syndrome score (r= 0.158 for males and r= 0.134 for females). Stronger correlations were found between ecDNA of mitochondrial origin and AOPP (r= 0.202 and 0.186 for males and females respectively). Multivariate regression analysis revealed associations of nuclear DNA with leukocyte and erythrocyte counts. The results of this study on healthy adolescents show that circulating ecDNA is associated with the risk of metabolic syndrome, not with obesity per se. The association between mitochondrial ecDNA and AOPP requires further attention as it supports a potential role of mitochondria-induced sterile inflammation in the pathogenesis of the metabolic syndrome.
Extracellular DNA (ecDNA) in plasma is a non-specific biomarker of tissue damage. Urinary ecDNA, especially of mitochondrial origin, is a potential non-invasive biomarker of kidney damage. Despite prominent tissue damage, ecDNA has not yet been comprehensively analysed in acute kidney injury (AKI). We analysed different fractions of ecDNA, i.e. total, nuclear and mitochondrial, in plasma and urine of children, and different animal models of AKI. We also analysed the activity of the deoxyribonuclease (DNase), which is contributes to the degradation of ecDNA. Patients with AKI had higher total and nuclear ecDNA in both, plasma and urine (sixfold and 12-fold in plasma, and 800-fold in urine, respectively), with no difference in mitochondrial ecDNA. This was mainly found for patients with AKI due to tubulointerstitial nephritis and atypical haemolytic uremic syndrome. Increased plasma ecDNA was also found in animal models of AKI, including adenine nephropathy (fivefold), haemolytic uremic syndrome (fourfold), and ischemia–reperfusion injury (1.5-fold). Total urinary ecDNA was higher in adenine nephropathy and ischemia–reperfusion injury (1300-fold and twofold, respectively). DNase activity in urine was significantly lower in all animal models of AKI in comparison to controls. In conclusion, plasma total and nuclear ecDNA and urinary total ecDNA is increased in patients and animals with particular entities of AKI, suggesting a mechanism-dependent release of ecDNA during AKI. Further studies should focus on the dynamics of ecDNA and its potential role in the pathogenesis of AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.