Crop pests are to blame for significant economic, social, and environmental losses worldwide. Various pests have different control strategies, and precisely identifying pests has become crucial to pest control and is a significant difficulty in agriculture. Many agricultural professionals are interested in deep learning (DL) models since they have shown significant promise in image recognition. Pest identification approaches in literature have relatively low accuracy in pest recognition and classification due to the complexity of their algorithms and limited data availability. Misclassification of insect pests sometimes leads to using the wrong pesticides, causing harm to agricultural yields and the surrounding environment. It necessitates developing an automated system capable of more accurate pest identification and classification. This paper presents a novel end-to-end DeepPestNet framework for pest recognition and classification. The proposed model has 11 learnable layers, including eight convolutional and three fully connected (FC) layers. We used image rotations techniques to increase the size of the dataset and image augmentations techniques to test the generalizability of the proposed DeepPestNet approach. We used the popular Deng's crops data set to assess the proposed DeepPestNet framework. We used the proposed method to recognize and classify crop pests into 10-class pests, i.e., Locusta migratoria, Euproctis pseudoconspersa strand, chrysochus Chinensis, empoasca flavescens, Spodoptera exigua, larva of laspeyresia pomonella, parasa lepida, acrida cinerea, larva of S. exigua, and L.pomonella types of insects pests. The proposed method achieved optimal accuracy of 100%. We compared the proposed DeepPestNet approach with traditional pre-trained deep learning (DL) models. To verify the general adaptability of this model, we tested the proposed model on the standard Kaggle dataset "Pest Dataset" to recognize nine types of pests: aphids, armyworm, beetle, bollworm, grasshopper, mites, mosquito, sawfly, and stem borer and achieved an accuracy of 98.92%. The proposed model can provide specialists and farmers with immediate and effective aid in recognizing pests, potentially reducing economic and crop yield losses.
A smart city is a sustainable and effectual urban center which offers a maximal quality of life to its inhabitants with the optimal management of their resources. Energy management is the most difficult problem in such urban centers because of the difficulty of energy models and their important role. The recent developments of machine learning (ML) and deep learning (DL) models pave the way to design effective energy management schemes. In this respect, this study introduces an artificial jellyfish optimization with deep learning-driven decision support system (AJODL-DSSEM) model for energy management in smart cities. The proposed AJODL-DSSEM model predicts the energy in the smart city environment. To do so, the proposed AJODL-DSSEM model primarily performs data preprocessing at the initial stage to normalize the data. Besides, the AJODL-DSSEM model involves the attention-based convolutional neural network-bidirectional long short-term memory (CNN-ABLSTM) model for the prediction of energy. For the hyperparameter tuning of the CNN-ABLSTM model, the AJO algorithm was applied. The experimental validation of the proposed AJODL-DSSEM model was tested using two open-access datasets, namely the IHEPC and ISO-NE datasets. The comparative study reported the improved outcomes of the AJODL-DSSEM model over recent approaches.
Currently, researchers are working to contribute to the emerging fields of cloud computing, edge computing, and distributed systems. The major area of interest is to examine and understand their performance. The major globally leading companies, such as Google, Amazon, ONLIVE, Giaki, and eBay, are truly concerned about the impact of energy consumption. These cloud computing companies use huge data centers, consisting of virtual computers that are positioned worldwide and necessitate exceptionally high-power costs to preserve. The increased requirement for energy consumption in IT firms has posed many challenges for cloud computing companies pertinent to power expenses. Energy utilization is reliant upon numerous aspects, for example, the service level agreement, techniques for choosing the virtual machine, the applied optimization strategies and policies, and kinds of workload. The present paper tries to provide an answer to challenges related to energy-saving through the assistance of both dynamic voltage and frequency scaling techniques for gaming data centers. Also, to evaluate both the dynamic voltage and frequency scaling techniques compared to non-power-aware and static threshold detection techniques. The findings will facilitate service suppliers in how to encounter the quality of service and experience limitations by fulfilling the service level agreements. For this purpose, the CloudSim platform is applied for the application of a situation in which game traces are employed as a workload for analyzing the procedure. The findings evidenced that an assortment of good quality techniques can benefit gaming servers to conserve energy expenditures and sustain the best quality of service for consumers located universally. The originality of this research presents a prospect to examine which procedure performs good (for example, dynamic, static, or non-power aware). The findings validate that less energy is utilized by applying a dynamic voltage and frequency method along with fewer service level agreement violations, and better quality of service and experience, in contrast with static threshold consolidation or non-power aware technique.
Having sudden strokes has had a very negative impact on all aspects in society to the point that it attracted efforts for better improvement and management of stroke diagnosis. Technological advancement also had an impact on the medical field such that nowadays caregivers have better options for taking care of their patients by mining and archiving their medical records for ease of retrieval. Furthermore, it is quite essential to understand the risk factors that make a patient more susceptible to strokes, thus there are some factors that make stroke prediction much easier. This research offers an analysis of the factors that enhance the stroke prediction process based on electronic health records. The most important factors for stroke prediction will be identified using statistical methods and Principal Component Analysis (PCA). It has been found that the most critical factors affecting stroke prediction are the age, average glucose level, heart disease, and hypertension. A balanced dataset is used for the model evaluation which was created by sub-sampling since the dataset for stroke occurrence is already highly imbalanced. In this study, seven different machine learning algorithms are implemented: Naïve Bayes, SVM, Random Forest, KNN, Decision Tree, Stacking, and majority voting to train on the Kaggle dataset to predict occurrence of stroke in patients. After preprocessing and splitting the dataset into training and testing sub-datasets, these proposed algorithms were evaluated according to accuracy, f1 score, recall value, and precision value. The NB classifier achieved the lowest accuracy level (86%), whereas the rest of the algorithms achieved similar accuracies 96%, f1 scores 0.98, precision 0.97, and recall 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.