Computer applications have considerably shifted from single data processing to machine learning in recent years due to the accessibility and availability of massive volumes of data obtained through the internet and various sources. Machine learning is automating human assistance by training an algorithm on relevant data. Supervised, Unsupervised, and Reinforcement Learning are the three fundamental categories of machine learning techniques. In this paper, we have discussed the different learning styles used in the field of Computer vision, Deep Learning, Neural networks, and machine learning. Some of the most recent applications of machine learning in computer vision include object identification, object classification, and extracting usable information from images, graphic documents, and videos. Some machine learning techniques frequently include zero-shot learning, active learning, contrastive learning, self-supervised learning, life-long learning, semi-supervised learning, ensemble learning, sequential learning, and multi-view learning used in computer vision until now. There is a lack of systematic reviews about all learning styles. This paper presents literature analysis of how different machine learning styles evolved in the field of Artificial Intelligence (AI) for computer vision. This research examines and evaluates machine learning applications in computer vision and future forecasting. This paper will be helpful for researchers working with learning styles as it gives a deep insight into future directions.
Approximately 2.5 quintillion bytes of data are emitted on a daily basis, and this has brought the world into the era of ''big data.'' Artificial neural networks (ANNs) are known for their effectiveness and efficiency for small datasets, and this era of big data has posed a challenge to the big data analytics using ANN. Recently, much research effort has been devoted to the application of the ANN in big data analytics and is still ongoing, although it is in it is early stages. The purpose of this paper is to summarize recent progress, challenges, and opportunities for future research. This paper presents a concise view of the state of the art, challenges, and future research opportunities regarding the applications of the ANN in big data analytics and reveals that progress has been made in this area. Our review points out the limitations of the previous approaches, the challenges in the ANN approaches in terms of their applications in big data analytics, and several ANN architecture that have not yet been explored in big data analytics and opportunities for future research. We believe that this paper can serve as a yardstick for future progress on the applications of the ANN in big data analytics as well as a starting point for new researchers with an interest in the exploration of the ANN in big data analytics. INDEX TERMS Big data analytics, artificial neural networks, evolutionary neural network, convolutional neural network, dataset. The associate editor coordinating the review of this manuscript and approving it for publication was Shirui Pan. many organizations on an ongoing basis. These datasets are being collected from various sources, including but not limited to the World Wide Web (WWW), social networks and sensor networks [3]. The discovery of knowledge from unstructured data accumulated from the WWW remains a difficult task because the content is suitable for human consumption rather than for machines [4]. Experimental evidence has shown that if big datasets are exploited and managed properly, it can give rise to critical intelligence that can motivate informed decisions and
The recent developments in deep learning techniques evolved to new heights in various domains and applications. The recognition, translation, and video generation of Sign Language (SL) still face huge challenges from the development perspective. Although numerous advancements have been made in earlier approaches, the model performance still lacks recognition accuracy and visual quality. In this paper, we introduce novel approaches for developing the complete framework for handling SL recognition, translation, and production tasks in real-time cases. To achieve higher recognition accuracy, we use the MediaPipe library and a hybrid Convolutional Neural Network + Bi-directional Long Short Term Memory (CNN + Bi-LSTM) model for pose details extraction and text generation. On the other hand, the production of sign gesture videos for given spoken sentences is implemented using a hybrid Neural Machine Translation (NMT) + MediaPipe + Dynamic Generative Adversarial Network (GAN) model. The proposed model addresses the various complexities present in the existing approaches and achieves above 95% classification accuracy. In addition to that, the model performance is tested in various phases of development, and the evaluation metrics show noticeable improvements in our model. The model has been experimented with using different multilingual benchmark sign corpus and produces greater results in terms of recognition accuracy and visual quality. The proposed model has secured a 38.06 average Bilingual Evaluation Understudy (BLEU) score, remarkable human evaluation scores, 3.46 average Fréchet Inception Distance to videos (FID2vid) score, 0.921 average Structural Similarity Index Measure (SSIM) values, 8.4 average Inception Score, 29.73 average Peak Signal-to-Noise Ratio (PSNR) score, 14.06 average Fréchet Inception Distance (FID) score, and an average 0.715 Temporal Consistency Metric (TCM) Score which is evidence of the proposed work.
Abstract-Lung nodules are potential manifestations of lung cancer, and their early detection facilitates early treatment and improves patient's chances for survival. For this reason, CAD systems for lung cancer have been proposed in several studies. All these works involved mainly three steps to detect the pulmonary nodule: preprocessing, segmentation of the lung and classification of the nodule candidates. This paper overviews the current state-of-the-art regarding all the approaches and techniques that have been investigated in the literature. It also provides a comparison of the performance of the existing approaches.
The induction motor plays a vital role in industrial drive systems due to its robustness and easy maintenance but at the same time, it suffers electrical faults, mainly rotor faults such as broken rotor bars. Early shortcoming identification is needed to lessen support expenses and hinder high costs by using failure detection frameworks that give features extraction and pattern grouping of the issue to distinguish the failure in an induction motor using classification models. In this paper, the open-source dataset of the rotor with the broken bars in a three-phase induction motor available on the IEEE data port is used for fault classification. The study aims at fault identification under various loading conditions on the rotor of an induction motor by performing time, frequency, and time-frequency domain feature extraction. The extracted features are provided to the models to classify between the healthy and faulty rotors. The extracted features from the time and frequency domain give an accuracy of up to 87.52% and 88.58%, respectively, using the Random-Forest (RF) model. Whereas, in time-frequency, the Short Time Fourier Transform (STFT) based spectrograms provide reasonably high accuracy, around 97.67%, using a Convolutional Neural Network (CNN) based fine-tuned transfer learning framework for diagnosing induction motor rotor bar severity under various loading conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.