Sewage effluents contain pharmaceuticals, personal care products and industrial chemicals, exposing aquatic organisms to complex mixtures. The consequences of exposure to combinations of different classes of drugs in fish are largely unknown. In this study, we exposed adult zebrafish (Danio rerio) males and females for two weeks to low, environmentally relevant concentrations of the endocrine disrupting chemical 17α-etinylestradiol (EE) and the selective serotonin re-uptake inhibitor (SSRI) citalopram, alone and in combination, and analyzed behaviors of importance for population fitness, scototaxis (light/dark preference), the novel tank test and shoal cohesion. Control water contained 0.4ng/L EE and the measured exposure concentrations were 0.9ng/L EE (nominal 0.1) and 1ng/L EE (nominal 0.5). The measured concentrations of citalopram were 0.1 (nominal 0.1) and 0.4μg/L (nominal 0.5). Both EE exposures increased anxiety in males in the scototaxis test, with significantly longer latency periods before entering and fewer visits to the white zone of the tank. The combined exposures (0.9ng/L EE+0.1μg/L citalopram and 1ng/L EE+0.4μg/L citalopram) resulted in abolishment of effects of EE, with shorter latency period and more transitions to white than for fish exposed to EE alone. In the novel tank test, the results surprisingly indicated lower anxiety after both EE and citalopram exposure. Significantly more transitions to the upper half of the tank observed in males exposed to 0.1μg/L citalopram alone compared to control males. Males exposed to EE (0.9ng/L) had shorter latency period to the upper half. Combination exposure resulted in a longer latency and fewer transitions to the upper half compared to both control, EE- and citalopram-exposed males. Males exposed to the combination spent significantly less time in the upper half than males EE or citalopram-exposed males. Females exposed to 1ng/L EE had fewer transitions to the upper half than the control group and females exposed to 0.4μg/L citalopram. In the shoaling test, males exposed to 0.1μg/L citalopram+0.9ng/L EE showed more transitions away from peers than males exposed to 0.1μg/L citalopram alone. In conclusion, low concentrations of EE, closely above the predicted no effect concentration (NOEC) of 0.1ng/L, created anxiety-like behavior in zebrafish males. Citalopram showed marginal effects at these low concentrations but in the combination exposure the behavioral effects of EE were abolished. This is an initial effort to understand the effects of cocktails of anthropogenic substances contaminating aquatic environments.
Arctic inhabitants are highly exposed to persistent organic pollutants (POP), which may produce adverse health effects. This study characterized alterations in tissue retinoid (vitamin A) levels in rat offspring and their dams following in utero and lactational exposure to the Northern Contaminant Mixture (NCM), a mixture of 27 contaminants including polychlorinated biphenyls (PCB), organochlorine (OC) pesticides, and methylmercury (MeHg), present in maternal blood of the Canadian Arctic Inuit population. Further, effect levels for retinoid system alterations and other endpoints were compared to the Arctic Inuit population exposure and their interrelationships were assessed. Sprague-Dawley rat dams were dosed with NCM from gestational day 1 to postnatal day (PND) 23. Livers, kidneys and serum were obtained from offspring on PND35, PND77, and PND350 and their dams on PND30 for analysis of tissue retinoid levels, hepatic cytochrome P-450 (CYP) enzymes, and serum thyroid hormones. Benchmark doses were established for all endpoints, and a partial least-squares regression analysis was performed for NCM treatment, hepatic retinoid levels, CYP enzyme induction, and thyroid hormone levels, as well as body and liver weights. Hepatic retinoid levels were sensitive endpoints, with the most pronounced effects at PND35 though still apparent at PND350. The effects on tissue retinoid levels and changes in CYP enzyme activities, body and liver weights, and thyroid hormone levels were associated and likely driven by dioxin-like compounds in the mixture. Low margins of exposure were observed for all retinoid endpoints at PND35. These findings are important for health risk assessment of Canadian Arctic populations and further support the use of retinoid system analyses in testing of endocrine-system-modulating compounds.
Arctic inhabitants consume large proportions of fish and marine mammals, and are therefore continuously exposed to levels of environmental toxicants, which may produce adverse health effects. Fetuses and newborns are the most vulnerable groups. The aim of this study was to evaluate changes in bone geometry, mineral density, and biomechanical properties during development following perinatal exposure to a mixture of environmental contaminants corresponding to maternal blood levels in Canadian Arctic human populations. Sprague-Dawley rat dams were dosed with a Northern Contaminant Mixture (NCM) from gestational day 1 to postnatal day (PND) 23. NCM contains 27 contaminants comprising polychlorinated biphenyls, organochlorine pesticides, and methylmercury. Femurs were collected on PND 35, 77 and 350, and diaphysis was analyzed by peripheral quantitative computed tomography and three-point bending test, while femoral neck was assessed in an axial loading experiment. Dose-response modeling was performed to establish the benchmark dose (BMD) for the analyzed bone parameters. Exposure to the high dose of NMC resulted in short and thin femur with reduced mechanical strength in offspring at PND35. BMD of femur length, cortical area, and stiffness were 3.2, 1.6, and 0.8 mg/kg bw/d, respectively. At PND77 femur was still thin, but at PND350 no treatment-related bone differences were detected. This study provides new insights on environmental contaminants present in the maternal blood of Canadian Arctic populations, showing that perinatal exposure induces bone alterations in the young offspring. These findings could be significant from a health risk assessment point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.