Suspended sediment load (SSL) prediction study is critical to water resource management. This paper presents studies related to the prediction of SSL using machine learning (ML) algorithms over the last 13 years. This research gives a survey of current studies that are used machine learning techniques to predict sediment load on several rivers in different reign. Also, it aims to find a performance model to predict the SSL. This is done by making comparisons between several studies that used machine learning techniques to predict sediment load on several rivers using different time scales. Several metrics were used to determine the best prediction model. Most of the metrics used are: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-Squared (R2) and Nash-Sutcliffe Efficiency Coefficient (NSE). The results of comparisons using different ML algorithms to predict the SSL have shown that the Multilayer perceptron (MLP) algorithm is the best compared to other algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.