Vibrating conveyors also named bowl feeders are a common equipment for conveying goods into production systems. These systems are used for the supplying of a certain number of goods to an individual designed interface and simultaneously arranging a correct orientation of the goods conveyed by the same time. This type of conveyor is used in various industries, such as for example automotive industry, electronic industry and medical industry. The target of this article is to determine a dynamic model and mechanical parameters by means of testing, and a numerical simulation of a ready-to-operate conveyor under standard working conditions.
On the basis of an analysis of the number of goods that are transported and handled in maritime transport, the ports for cargo ships may be considered as places with concentrated emissions. Reducing the emissions in ports can be achieved by shortening the stay times of cargo ships. The time that ships spend in ports may be reduced to the time that is required for the effective handling of the goods. One of the solutions for effective handling is using equipment with linear rolling systems. To prevent the idle time of cargo ships and the unnecessary increment of emissions in ports because of the possible failure of the linear rolling systems, their reliability and failure prediction are greatly required. Unfortunately, the common diagnostic systems of linear rolling systems in transportation practice still fail in particular cases of great external loads. Therefore, an original solution of the diagnostic system was designed on the basis of a load-free diagnostic part with a vibration sensor that is integrated into a carriage of the linear rolling system. A functional sample of the diagnostics was produced, and the vibrations that were measured on a loaded carriage and on the diagnostic part were compared in laboratory conditions under significant external loads. Encouraging results were reached by a time-domain analysis of the measured data. On the diagnostic part, the damage appeared clearly, while, on the loaded carriage, there were no observable signs of damage.
Linear rolling guides, used in production machines for the realisation of linear motion, demand in industrial practice early damage identification to prevent production outages and losses. Therefore, the article aims for early damage diagnostics that use the principle of a load-free diagnostic part integrated into the carriage of the linear rolling guide. This principle was employed for developing an innovative method of damage identification to a guiding profile or rolling elements. The proposed innovative method is based on analysing vibration acceleration measured on the diagnostic part in the context of carriage position. In addition, a unique connection of an acceleration sensor to the diagnostic part through a mechanical component with defined parameters of stiffness and mass was designed. The innovative method was verified by laboratory testing on a designed functional sample of the diagnostic system. The computed reliability of the proposed diagnostic method reached 98%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.