Background:Oxidative stress affects sperm quality negatively. To maintain the pro/antioxidant balance, some metal ions (e.g. copper, zink, iron, selenium), which are co-factors of the antioxidant enzymes, are essential. However, iron and copper could act as prooxidants inducing oxidative damage of spermatozoa.Aims:To reveal a possible correlation between the concentrations of some metal ions (iron, copper, zinc, and selenium) in human seminal plasma, oxidative stress, assessed by malondialdehyde and total glutathione levels, and semen quality, assessed by the parameters count, motility, and morphology.Study Design:Descriptive study.Methods:The semen analysis for volume, count, and motility was performed according to World Health Organization (2010) guidelines, using computer-assisted semen analysis. For the determination of spermatozoa morphology, a SpermBlue staining method was applied. Depending on their parameters, the sperm samples were categorized into normozoospermic, teratozoospermic, asthenoteratozoospermic, and oligoteratozoospermic. The seminal plasma content of iron, copper, zinc, and selenium was estimated by atomic absorption spectroscopy. The malondialdehyde and total glutathione levels were quantified spectrophotometrically.Results:In the groups with poor sperm quality, the levels of Fe were higher, whereas those of Zn and Se were significantly lower than in the normozoospermic group. In all groups with poor sperm quality, increased levels of malondialdehyde and decreased glutathione levels were detected as evidence of oxidative stress occurrence. All these differences are most pronounced in the asthenoteratozoospermic group where values differ nearly twice as much compared to the normozoospermic group. The Fe concentration correlated positively with the malondialdehyde (r=0.666, p=0.018), whereas it showed a negative correlation with the level of total glutathione (r=-0.689, p=0.013). The total glutathione level correlated positively with the sperm motility (r=0.589, p=0.044). Conclusion: The elevated levels of Fe and the reduced Se levels are associated with sperm damage. The changes in the concentrations of the trace elements in human seminal plasma may be related to sperm quality since they are involved in the maintenance of the pro-/antioxidative balance in ejaculate.
The somatostatin analogs octreotide and lanreotide, selective to receptor subtypes 2 and 5, failed clinical efficacy for the prevention of restenosis after percutaneous transluminal angioplasty. These findings might have been the result of targeting a wrong subset of receptors. In rat arteries, subtypes 1 and 4 are expressed 3-4 times more prominently than 2 and 5, and subtype 1 is the nearly exclusive subtype in atherosclerotic human vessels. Here, we demonstrate that daily s.c. injections (50-500 microg/kg/d) of CH275 (DesAA1,2,5(D-W8,IAmp9)Somatostatine-14), selective to subtypes 1 and 4, dose-dependently inhibited intimal hyperplasia 14 days after rat carotid denudation injury (for intimal area P=0.0002 across the dose range). CH275 was more effective than somatostatin-14 (equal affinity to all five subtypes, P=0.03), or octreotide (selective to subtypes 2 and 5, P=0.098). When rats were given the peptides for 14 days with end-point at 28 days, CH275 still significantly inhibited intimal area expansion. Both CH275 and octreotide inhibited the outgrowth of cells from postinjury aortic tissue punch-explants and the distance migrated in vitro, but not cell replication, which indicated that the effects of somatostatin analogs were directed on the migration of intimal cell progenitors rather than on their proliferation.
In vivo effects of N-benzyloxycarbonyl (Cbz)-Leu-Leu-leucinal (MG132) on chymotryptic-like (ChT-L), tryptic-like, and post-glutamyl peptide hydrolytic-like proteasome activities, protein oxidation, lipid peroxidation (LP), glutathione (GSH) level, as well as on the activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione-reductase) in the rat liver were studied. The possibility of MG132 provoking the formation of free oxygen radicals was also assayed in primary hepatocytes. The following results were obtained: (1) In vivo, MG132 did not change the spontaneous LP, but increased Fe-induced LP and the amount of oxidized proteins; it decreased the GSH level in liver. From the proteasome activities studied in liver cytosol only ChT-L activity was significantly decreased after MG132 administration. Furthermore, MG132 increased antioxidant enzyme activities of SOD, CAT, and GSH-Px. (2) In vitro, MG132 increased free radical oxygen species in hepatocytes; this effect disappeared in the presence of CAT or mannitol. In conclusion, since nowadays proteasome inhibitors are entering into the swing of laboratory and clinical practice, the present data could provide useful information for MG132 action. Consequently, future in vivo experiments with MG132 could highlight the possibility of its use at different pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.