The influence on the bond between the steel fiber and the matrix of the anticorrosive treatments of steel used for concrete reinforcement is not yet fully understood. The topic of steel fiber treatment was not also studied clearly in terms of brass removal before. This paper deals with how the brass on the surface of steel fibers behaves in the UHPC matrix and how it affects its properties. The steel fibers were firstly modified with a number of surface treatments to remove brass on their surface. Some of the treatments have never been tried before for this purpose. Secondly, the surface of the fibers was analyzed by SEM, EDS, XRF, and stereomicroscopy. Lastly, the properties of the composites were analyzed. It was found out that the majority of brass on the surface of the fibers could be removed by mixture of NH3 and H2O2 with a ratio of 3:1 (v/v). It was also found out that the surface treatment slightly affects the mechanical properties, but it does that only by mechanical interlocking between the fiber and the matrix. No dissolution of the surface treatment was observed under the given conditions. According to the results, steel fibers without surface treatment should be used in UHPC if available.
This research delves into the potential use of fumed nanosilica in ultra-high performance concrete for ballistic protection. First, the mechanical properties, slump flow, and specific gravity of UHPC with different contents of Aerosil 200 were determined. Then, calorimetric studies were conducted on these cement composites. Lastly, the differential efficiency factor and spalling area of UHPC with fumed nanosilica were determined. It was found out that the slump flow, the mechanical properties, and differential efficiency factor are slightly decreased by the addition of fumed nanosilica. However, the addition of the fumed nanosilica is beneficial in terms of the spalling area decrease and it is highly reactive during the induction period. Some of the results are supported by BSEM imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.