Rationale:
Innate and adaptive immune responses alter numerous homeostatic processes that are controlled by nuclear hormone receptors. NR4A1 is a nuclear receptor that is induced in vascular pathologies, where it mediates protection.
Objective:
The underlying mechanisms that regulate the activity of NR4A1 during vascular injury are not clear. We therefore searched for modulators of NR4A1 function that are present during vascular inflammation.
Methods and Results:
We report that the protein encoded by
interferon stimulated gene 12
(ISG12), is a novel interaction partner of NR4A1 that inhibits the transcriptional activities of NR4A1 by mediating its Crm1-dependent nuclear export. Using 2 models of vascular injury, we show that ISG12-deficient mice are protected from neointima formation. This effect is dependent on the presence of NR4A1, as mice deficient for both ISG12 and NR4A1 exhibit neointima formation similar to wild-type mice.
Conclusions:
These findings identify a previously unrecognized feedback loop activated by interferons that inhibits the vasculoprotective functions of NR4A nuclear receptors, providing a potential new therapeutic target for interferon-driven pathologies.
Transgenic founder rabbits carrying a gene construct consisting of a 2.5 kb murine whey acidic protein promoter (mWAP), 7.2 kb of the human clotting factor VIII (hFVIII) cDNA and 4.6 kb of 3' flanking sequences of mWAP gene were crossed for three generations. All transgenic animals showed stable transgene transmission. Transgenic females showed high level of recombinant hFVIII (rhFVIII) mRNA expression in biopsed mammary gland tissues, while marginal expression of rhFVIII mRNA was observed in the spleen, lung and brain. No adverse effects of ectopic expression on the physiology of the rabbits were observed. Expression was not detected in the liver, kidney, heart and skeletal muscle. In transgenic females derived from three generations, rhFVIII protein was secreted from the mammary gland of lactating females, as shown by Western blotting. Biological activity of rhFVIII protein, as revealed in clotting assays was ranged from 0.012 to 0.599 IU/ml corresponding to 1.2% and 59.9% of the hFVIII level in normal human plasma. No apparent effect of secreted rhFVIII on the milk performance of rabbits was observed. Our results confirm the possibility of producing a significant amount of a biologically active rhFVIII in the mammary gland of established transgenic rabbit lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.