It is commonly predicted that the intensity of primary production and soil carbon (C) content are positively linked. Paradoxically, many long-term field observations show that although plant litter is incorporated to soil in large quantities, soil C content does not necessarily increase. These results suggest that a negative relationship between C input and soil C conservation exists. Here, we demonstrate in controlled conditions that the supply of fresh C may accelerate the decomposition of soil C and induce a negative C balance. We show that soil C losses increase when soil microbes are nutrient limited. Results highlight the need for a better understanding of microbial mechanisms involved in the complex relationship between C input and soil C sequestration. We conclude that energy available to soil microbes and microbial competition are important determinants of soil C decomposition.
Understanding how ecosystems store or release carbon is one of ecology's greatest challenges in the 21st century. Organic matter covers a large range of chemical structures and qualities, and it is classically represented by pools of different recalcitrance to degradation. The interaction effects of these pools on carbon cycling are still poorly understood and are most often ignored in global-change models. Soil scientists have shown that inputs of labile organic matter frequently tend to increase, and often double, the mineralization of the more recalcitrant organic matter. The recent revival of interest for this phenomenon, named the priming effect, did not cross the frontiers of the disciplines. In particular, the priming effect phenomenon has been almost totally ignored by the scientific communities studying marine and continental aquatic ecosystems. Here we gather several arguments, experimental results, and field observations that strongly support the hypothesis that the priming effect is a general phenomenon that occurs in various terrestrial, freshwater, and marine ecosystems. For example, the increase in recalcitrant organic matter mineralization rate in the presence of labile organic matter ranged from 10% to 500% in six studies on organic matter degradation in aquatid ecosystems. Consequently, the recalcitrant organic matter mineralization rate may largely depend on labile organic matter availability, influencing the CO2 emissions of both aquatic and terrestrial ecosystems. We suggest that (1) recalcitrant organic matter may largely contribute to the CO2 emissions of aquatic ecosystems through the priming effect, and (2) priming effect intensity may be modified by global changes, interacting with eutrophication processes and atmospheric CO2 increases. Finally, we argue that the priming effect acts substantially in the carbon and nutrient cycles in all ecosystems. We outline exciting avenues for research, which could provide new insights on the responses of ecosystems to anthropogenic perturbations and their feedbacks to climatic changes.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology.Abstract. In a general theoretical ecosystem model, we investigate the conditions under which herbivores increase primary production and lead to grazing optimization through recycling of a limiting nutrient.Analytical and simulation studies of the model lead to several general results. Grazing optimization requires that (1) the proportion of nutrient lost along the herbivore pathway be sufficiently smaller than the proportion of nutrient lost throughout the rest of the ecosystem; and that (2) inputs of nutrient into the system be greater than a threshold value, which depends on the sensitivity of plant uptake rate to an increase in soil mineral nutrient.An increase in nutrient turnover rate is not sufficient to explain grazing optimization in the long term. When a nutrient is the single limiting factor, plant biomass and productivity at equilibrium are determined only by the balance of ecosystem inputs and outputs of nutrient. Processes that do not have an impact on these inputs or outputs have no effect on primary producers.On the other hand, turnover rates are important for the transient dynamics of the system, and the equilibrium analysis is relevant only if it can be reached in a reasonable time scale. The equilibrium is not reached by a compartment with a very slow turnover rate, such as the resistant soil organic matter, before several centuries. On a small time scale, such a compartment can be considered constant, and the trend of the system is predicted with a simplified system.The results at equilibrium are insensitive to the functional form used to describe herbivore consumption: the results obtained for simple, linear, donor-controlled herbivory also apply to most forms of more realistic, recipient-controlled herbivory.We conclude that grazing optimization is most likely to occur in systems with large losses of the limiting nutrient during recycling of plant detritus, or where herbivores bring nutrient from outside the ecosystem considered (which acts to reduce, or even make negative, the fraction of nutrient lost along the herbivore detritus pathway).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.