To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc.) and by the future detectors in space (eLISA, etc.), inspiralling compact binaries — binary star systems composed of neutron stars and/or black holes in their late stage of evolution — require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source) and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary’s orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries — moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins), and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.
The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many nonlinear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary’s orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.
The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many nonlinear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary’s orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.
The general relativistic corrections in the equations of motion and associated energy of a binary system of pointlike masses are derived at the third post-Newtonian ͑3PN͒ order. The derivation is based on a post-Newtonian expansion of the metric in harmonic coordinates at the 3PN approximation. The metric is parametrized by appropriate nonlinear potentials, which are evaluated in the case of two point particles using a Lorentzian version of a Hadamard regularization which has been defined in previous works. Distributional forms and distributional derivatives constructed from this regularization are employed systematically. The equations of motion of the particles are geodesiclike with respect to the regularized metric. Crucial contributions to the acceleration are associated with the nondistributivity of the Hadamard regularization and the violation of the Leibniz rule by the distributional derivative. The final equations of motion at the 3PN order are invariant under global Lorentz transformations, and admit a conserved energy ͑neglecting the radiation reaction force at the 2.5PN order͒. However, they are not fully determined, as they depend on one arbitrary constant, which probably reflects a physical incompleteness of the point-mass regularization. The results of this paper should be useful when comparing theory to the observations of gravitational waves from binary systems in future detectors VIRGO and LIGO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.