Mutations in the genes encoding amyloid-beta precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2) are known to cause early-onset, autosomal dominant Alzheimer's disease. Studies of plasma and fibroblasts from subjects with these mutations have established that they all alter amyloid beta-protein (beta APP) processing, which normally leads to the secretion of amyloid-beta protein (relative molecular mass 4,000; M(r) 4K; approximately 90% A beta1-40, approximately 10% A beta1-42(43)), so that the extracellular concentration of A beta42(43) is increased. This increase in A beta42(43) is believed to be the critical change that initiates Alzheimer's disease pathogenesis because A beta42(43) is deposited early and selectively in the senile plaques that are observed in the brains of patients with all forms of the disease. To establish that the presenilin mutations increase the amount of A beta42(43) in the brain and to test whether presenilin mutations act as true (gain of function) dominants, we have now constructed mice expressing wild-type and mutant presenilin genes. Analysis of these mice showed that overexpression of mutant, but not wild-type, PS1 selectively increases brain A beta42(43). These results indicate that the presenilin mutations probably cause Alzheimer's disease through a gain of deleterious function that increases the amount of A beta42(43) in the brain.
Alzheimer's disease is characterized by the accumulation of beta-amyloid in plaques, aggregation of hyperphosphorylated tau in neurofibrillary tangles and neuroinflammation, together resulting in neurodegeneration and cognitive decline 1 . The NLRP3 inflammasome assembles inside of microglia upon activation, leading to increased cleavage and activity of caspase-1 and downstream IL-1β release 2 . While the NLRP3 inflammasome was shown to be essential for the development and progression of beta-amyloid pathology in mice 3 , the precise impact on tau pathology remains elusive. Here we show that loss of NLRP3 inflammasome function reduced tau hyperphosphorylation and aggregation by regulating tau kinases and phosphatases. Tau activated the NLRP3 inflammasome and intracerebral injection of fibrillar beta-amyloid-containing brain *
The relationship between NFD and Alzheimer-type dementia, and the criteria for a biochemical diagnosis of AD, are documented, and an association between AD and the extent of NFD in defined brain areas is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.