Comparison of di erent Tilde versions on Mutagenesis: TildeLDS, Tildeclassic, Tildeclassic without localization but with indexing ({loc, +ind) and Tildeclassic without localization and without indexing ({loc, {ind
Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as computing the marginals, given evidence and learning from (partial) interpretations, have not really been addressed for probabilistic logic programs before. The first contribution of this paper is a suite of efficient algorithms for various inference tasks. It is based on the conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce inference tasks to well-studied tasks, such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature. The second contribution is an algorithm for parameter estimation in the learning from interpretations setting. The algorithm employs expectation-maximization, and is built on top of the developed inference algorithms. The proposed approach is experimentally evaluated. The results show that the inference algorithms improve upon the state of the art in probabilistic logic programming, and that it is indeed possible to learn the parameters of a probabilistic logic program from interpretations.
We introduce DeepProbLog, a neural probabilistic logic programming language that incorporates deep learning by means of neural predicates. We show how existing inference and learning techniques of the underlying probabilistic logic programming language ProbLog can be adapted for the new language. We theoretically and experimentally demonstrate that DeepProbLog supports (i) both symbolic and subsymbolic representations and inference, (ii) program induction, (iii) probabilistic (logic) programming, and (iv) (deep) learning from examples. To the best of our knowledge, this work is the first to propose a framework where general-purpose neural networks and expressive probabilistic-logical modeling and reasoning are integrated in a way that exploits the full expressiveness and strengths of both worlds and can be trained end-to-end based on examples.
Probabilistic inductive logic programming, sometimes also called statistical relational learning, addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with first order logic representations and machine learning. A rich variety of different formalisms and learning techniques have been developed. In the present paper, we start from inductive logic programming and sketch how it can be extended with probabilistic methods. More precisely, we outline three classical settings for inductive logic programming, namely learning from entailment, learning from interpretations, and learning from proofs or traces, and show how they can be used to learn different types of probabilistic representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.