Ceramide has been suggested to be a potent bioactive lipid involved in cell growth, differentiation and apoptosis. Its precursor, dihydroceramide, does not affect these processes. The truncated dihydroceramide analogues N-hexanoyl-[4,5-3H]-d-erythro-sphinganine and N-[1-14C]-hexanoyl-d-erythro-sphinganine were used to study the conversion of dihydroceramide into ceramide by rat hepatocytes. The formation of tritiated water after the addition of the tritiated substrate to intact and permeabilized rat hepatocytes was followed to measure enzyme activity. Desaturation was severely depressed in permeabilized hepatocytes, suggesting loss of cofactors. Of a variety of cofactors tested in the permeabilized cells, NADPH appeared to be stimulatory, pointing to the involvement of a desaturase. In agreement with this, the addition of inhibitors and redox effectors known to affect Delta9-stearoyl-CoA desaturase and Delta1-plasmanyl-ethanolamine desaturase to intact cells resulted in severe inhibition of the desaturation. When added to permeabilized cells fortified with NADPH, these compounds counteracted the NADPH stimulation. The enzyme system was further studied in broken cells. On cell fractionation, the activity was recovered in the microsomal fraction. The results indicate that the conversion of dihydroceramide into ceramide is ctalysed by a desaturase and not by a dehydrogenase or an oxidase as was generally believed.
The introduction of the double bond in the sphingoid backbone of sphingolipids occurs at the level of dihydroceramide via an NADPH-dependent desaturase, as discovered in permeabilized rat hepatocytes. In the rat, the enzyme activity, which has now been further characterized, appeared to be mostly enriched in liver and Harderian gland. By means of subcellular fractionation of rat liver homogenates and density gradient separation of microsomal fractions, the desaturase was localized to the endoplasmic reticulum. Various detergents were inhibitory to the enzyme, and maximal activities were obtained in the presence of NADPH and when the substrate was complexed to albumin. In the presence of albumin, the chain length of the fatty acid of the truncated dihydroceramides hardly affected the activity. Finally, in view of a likely evolutionary relationship between desaturases and hydroxylases, the formation of hydroxylated intermediates was analyzed. No evidence for their presence was found under our assay conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.