For the successful completion of medical interventional procedures, several concepts, such as daily positioning compensation, dose accumulation or delineation propagation, rely on establishing a spatial coherence between planning images and images acquired at different time instants over the course of the therapy. To meet this need, image-based motion estimation and compensation relies on fast, automatic, accurate and precise registration algorithms. However, image registration quickly becomes a challenging and computationally intensive task, especially when multiple imaging modalities are involved. In the current study, a novel framework is introduced to reduce the computational overhead of variational registration methods. The proposed framework selects representative voxels of the registration process, based on a supervoxel algorithm. Costly calculations are hereby restrained to a subset of voxels, leading to a less expensive spatial regularized interpolation process. The novel framework is tested in conjunction with the recently proposed EVolution multi-modal registration method. This results in an algorithm requiring a low number of input parameters, is easily parallelizable and provides an elastic voxel-wise deformation with a subvoxel accuracy. The performance of the proposed accelerated registration method is evaluated on cross-contrast abdominal T1/T2 MR-scans undergoing a known deformation and annotated CT-images of the lung. We also analyze the ability of the method to capture slow physiological drifts during MR-guided high intensity focused ultrasound therapies and to perform multi-modal CT/MR registration in the abdomen. Results have shown that computation time can be reduced by 75% on the same hardware with no negative impact on the accuracy.
Objective: A new computer tool is proposed to distinguish between focal nodular hyperplasia (FNH) and an inflammatory hepatocellular adenoma (I-HCA) using contrast-enhanced ultrasound (CEUS). The new method was compared with the usual qualitative analysis. Methods: The proposed tool embeds an "optical flow" algorithm, designed to mimic the human visual perception of object transport in image series, to quantitatively analyse apparent microbubble transport parameters visible on CEUS. Qualitative (visual) and quantitative (computer-assisted) CEUS data were compared in a cohort of adult patients with either FNH or I-HCA based on pathological and radiological results. For quantitative analysis, several computer-assisted classification models were tested and subjected to cross-validation. The accuracies, area under the receiver-operating characteristic curve (AUROC), sensitivity and specificity, positive predictive values (PPVs), negative predictive values (NPVs), false predictive rate (FPRs) and false negative rate (FNRs) were recorded.
4D-MRI is a promising tool for organ exploration, target delineation and treatment planning. Intra-scan motion artifacts may be greatly reduced by increasing the imaging frame rate. However, poor signal-to-noise ratios (SNR) are observed when increasing spatial and/or frame number per physiological cycle, in particular in the abdomen.In the current work, the proposed 4D-MRI method favored spatial resolution, frame number, isotropic voxels and large field-of-view (FOV) during MR-acquisition. The consequential SNR penalty in the reconstructed data is addressed retrospectively using an iterative back-projection (IBP) algorithm. Practically, after computing individual spatial 3D deformations present in the images using a deformable image registration (DIR) algorithm, each 3D image is individually enhanced by fusing several successive frames in its local temporal neighborood, these latter being likely to cover common independent informations. A tuning parameter allows one to freely readjust the balance between temporal resolution and precision of the 4D-MRI.The benefit of the method was quantitatively evaluated on the thorax of 6 mice under free breathing using a clinically acceptable duration. Improved 4D cardiac imaging was also shown in the heart of 1 mice. Obtained results are compared to theoretical expectations and discussed. The proposed implementation is easily parallelizable and optimized 4D-MRI could thereby be obtained with a clinically acceptable duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.