In this paper we present a methodology to use Gabor response features for real-time visual road environment classification. Processing Gabor filters using hardware solely dedicated to this task enables improved real-time texture classification. Using such hardware enables us to successfully extract Gabor feature information for a four-class road environment classification problem. We used summary histogram as an intermediate level of texture representation prior to final classification. Overall we obtain a maximally correct classification circa 98%, outperforming prior work in the field.
In this article, we propose a hybrid model for spotting words and regular expressions (REGEX) in handwritten documents. The model is made of the state-of-the-art BLSTM (Bidirectional Long Short Time Memory) neural network for recognizing and segmenting characters, coupled with a HMM to build line models able to spot the desired sequences. Experiments on the Rimes database show very promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.