BackgroundWe aimed to assess, for the first time, the nature of the indoor air contamination of hospitals.Methods and FindingsMore than 40 volatile organic compounds (VOCs) including aliphatic, aromatic and halogenated hydrocarbons, aldehydes, alcohols, ketones, ethers and terpenes were measured in a teaching hospital in France, from sampling in six sampling sites – reception hall, patient room, nursing care, post-anesthesia care unit, parasitology-mycology laboratory and flexible endoscope disinfection unit – in the morning and in the afternoon, during three consecutive days. Our results showed that the main compounds found in indoor air were alcohols (arithmetic means ± SD: 928±958 µg/m3 and 47.9±52.2 µg/m3 for ethanol and isopropanol, respectively), ethers (75.6±157 µg/m3 for ether) and ketones (22.6±20.6 µg/m3 for acetone). Concentrations levels of aromatic and halogenated hydrocarbons, ketones, aldehydes and limonene were widely variable between sampling sites, due to building age and type of products used according to health activities conducted in each site. A high temporal variability was observed in concentrations of alcohols, probably due to the intensive use of alcohol-based hand rubs in all sites. Qualitative analysis of air samples led to the identification of other compounds, including siloxanes (hexamethyldisiloxane, octamethyltrisiloxane, decamethylcyclopentasiloxane), anesthetic gases (sevoflurane, desflurane), aliphatic hydrocarbons (butane), esters (ethylacetate), terpenes (camphor, α-bisabolol), aldehydes (benzaldehyde) and organic acids (benzoic acid) depending on sites.ConclusionFor all compounds, concentrations measured were lower than concentrations known to be harmful in humans. However, results showed that indoor air of sampling locations contains a complex mixture of VOCs. Further multicenter studies are required to compare these results. A full understanding of the exposure of healthcare workers and patients to complex mixtures of chemical compounds can then be related to potential health outcomes.
Aims: (1) To obtain an overall estimate of variability of personal exposure of Paris office workers to fine particles (PM 2.5 ) and nitrogen dioxide (NO 2 ), and to quantify their microenvironmental determinants. (2) To examine the role of potential determinants of indoor concentrations. Methods: Sixty two office workers in a Paris municipal administration (all non-smokers) were equipped with personal samplers: passive samplers for 48 hours for NO 2 (n = 62), and active pumps for 24 hours for PM 2.5 (n = 55). Simultaneous measurements were performed in homes and offices; the local air monitoring network provided ambient concentrations. A time activity diary was used to weight measured concentrations by time spent in each microenvironment in order to estimate exposure concentrations. ). Personal exposures to PM 2.5 and NO 2 were not significantly different from in-office concentrations. PM 2.5 and NO 2 personal exposures were not significantly correlated. In-home, in-office, in-transit, outdoor time weighted concentrations, and time spent in other indoor microenvironments explain respectively 86% and 78% of personal variations in PM 2.5 and NO 2 . In-home PM 2.5 concentration was primarily influenced by exposure to environmental tobacco smoke, and secondly by the ambient level (R 2 = 0.20). NO 2 in-home concentration was affected mostly by the ambient level and gas cooking time (R 2 = 0.14). Conclusion: While results show the major contribution of in-home and in-office concentrations to both NO 2 and PM 2.5 personal exposures, the identification of indoor level determinants was not very conclusive.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
L'évaluation des impacts sanitaires liés à la pollution atmosphérique requiert la connaissance quantifiée de l'exposition des populations. Cette exposition peut être mesurée ou estimée, individuellement ou collectivement. Au plan collectif, plusieurs approches permettent d'estimer la répartition spatiale des expositions : 1) l'approche dite « déterministe » part de l'inventaire des sources et de leurs flux d'émission et calcule les concentrations atmosphériques résultantes, 2) l'approche dite « probabiliste » spatialise des résultats de mesures issues du réseau de surveillance de la qualité de l'air par interpolation géostatistique. Outre leurs incertitudes propres, la pertinence de ces deux approches dépend des objectifs de l'étude des impacts sanitaires. Concernant la prévision des bénéfices sanitaires attribuables aux normes limitant les émissions des véhicules routiers, une combinaison des deux approches s'avère nécessaire. Cette combinaison est possible par l'intermédiaire des méthodes géostatistiques, qui présentent en outre l'avantage de fournir une estimation des incertitudes liées à la cartographie du polluant. L'objectif de cette étude est donc de tester la faisabilité d'une approche combinée déterministe/ probabiliste pour la détermination de la répartition spatiale de l'exposition moyenne annuelle aux PM 10 en France métropolitaine en 2000. Elle fait partie d'une étude portant sur l'évaluation des impacts sanitaires de la pollution atmosphérique liée au trafic routier dans les zones urbaines, en se focalisant en particulier sur les enfants et en comparant les situations en 2000 et en 2010. Cette étude s'inscrit dans le cadre du programme UNECE-WHO Pan European Program for Transport, Health and Environment (THE PEP Project) : « Transport-related health impacts and their costs and benefits with a particular focus on children ». Les avantages et inconvénients des méthodes permettant d'évaluer l'exposition des populations à la pollution atmosphérique sont tout d'abord discutés. Le cas d'étude et les principales étapes d'une combinaison géostatistique sont ensuite présentés, ainsi que les résultats obtenus pour l'évaluation des populations exposées aux PM 10 en France en 2000. Mots clés Évaluation des impacts sanitaires. Cartographie. PM 10. Géostatistique. Exposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.