One important objective for animal welfare is to maintain animals free from pain, injury or disease. Therefore, detecting and evaluating the intensity of animal pain is crucial. As animals cannot directly communicate their feelings, it is necessary to identify sensitive and specific indicators that can be easily used. The aim of the present paper is to review relevant indicators to assess pain in several farm species. The term pain is used for mammals, birds and fish, even though the abilities of the various species to experience the emotional component of pain may be different. Numerous behavioural changes are associated with pain and many of them could be used on farms to assess the degree of pain being experienced by an animal. Pain, as a stressor, is associated with variations in the hypothalamic-pituitary-adrenal axis as well as in the sympathetic and immune systems that can be used to identify the presence of pain rapidly after it started. However, most of these measures need sophisticated equipment for their assessment. Therefore, they are mainly adapted to experimental situations. Injuries and other lesional indicators give information on the sources of pain and are convenient to use in all types of situations. Histopathological analyses can identify sources of pain in experimental studies. When pronounced and/or long lasting, the pain-induced behavioural and physiological changes can decrease production performance. Some indicators are very specific and sensitive to pain, whereas others are more generally related to stressful situations. The latter can be used to indicate that animals are suffering from something, which may be pain. Overall, this literature review shows that several indicators exist to assess pain in mammals, a few in birds and very few in fish. Even if in some cases, a single indicator, usually a behavioural indicator, may be sufficient to detect pain, combining various types of indicators increases sensitivity and specificity of pain assessment. Research is needed to build and validate new indicators and to develop systems of pain assessment adapted to each type of situation and each species.
The present paper describes the main procedures used to slaughter fowl, pigs, calves and adult cattle, sheep, and farmed fish, starting on the farm and ending with the death of the animal at the abattoir. It reviews the currently known causes of stress, indicated by behavioural and physiological measurements on the animal level, and by post-mortem muscle metabolism. During the pre-slaughter period, psychological stress is due to changes of environment, social disturbances and handling, and physical stress is due to food deprivation, climatic conditions, fatigue, and sometimes pain. The exact causes of stress depend, however, on the characteristics of each species, including the rearing system. For fowl, bird catching and crating, duration and climatic conditions of transport and of lairage and shackling are the main known pre-slaughter stress factors. For pigs, stress is caused by fighting during mixing of pens, loading and unloading conditions, and introduction in the restrainer. Handling and novelty of the situation contribute to the stress reactions. For veal calves and adult cattle, disruption of the social group, handling, loading and sometimes unloading conditions, fatigue, novelty of the situation and for calves mixing with unfamiliar animals are known stress factors. Gathering and yarding of extensively reared lambs and sheep causes stress, particularly when shepherd dogs are used. Subsequent transport may induce fatigue, especially if sheep are commercialised through auctions or markets. In farmed fish, stress is predominantly related to environmental aspects such as temperature, oxygen, cleanliness of the water and, to a certain extent, stocking density and removal of the fish from the water. If transport and lairage conditions are good and their durations not too long, they may allow pigs, calves and adult cattle, sheep, and fish to rest. For certain species, it was shown that genetic origin and earlier experience influence reactions to the slaughter procedure. Stunning techniques used depend on the species. Pigs and fowl are mostly electrically or gas-stunned, while most adult cattle are stunned with a captive bolt pistol. Calves and sheep may be electrically stunned or with a captive bolt pistol. Various stunning methods exist for the different farmed fish species. Potential causes of stress associated with the different stunning procedures are discussed. The paper addresses further consequences for meat quality and possible itineraries for future research. For all species, and most urgently for fish, more knowledge is needed on stunning and killing techniques, including gas-stunning techniques, to protect welfare.
Animals are subjected to various events that cause physical exhaustion and psychological stress during transfer to slaughter. This can lead to defective meat quality. Some animals may be better able to withstand the stress of transfer, depending on their previous experience of transport and on their finishing conditions (mixing, farmers' attitudes). The objective of this study was to assess the impact of 1) the conditions of transfer to slaughter (including duration of the journey, waiting time at lairage, etc.); and 2) the bulls' previous history (including experience in transport, mixing during finishing, and the farmers' attitudes) on the reactions of bulls to transfer and on their meat quality. We conducted a survey in commercial conditions. The history of the bulls and the facilities on the farms were noted; farmers were questioned on their attitudes; the bulls' reactions to loading into and unloading from the truck were observed; journey-related data were collected; and cortisol concentration at slaughter and the pH of the LM and the rectus abdominis were measured. Our study confirmed that certain physical factors associated with transport can increase stress and limit the decline of meat pH. These factors include the absence of loading facilities on the farm, transport on a warm day, or a short waiting time at lairage. Social aspects also played a role; the presence of bulls from the same finishing group limited stress and improved the pH decline. Events and management before transfer were also of importance; the farmer awareness of the sensitivity of bulls to humans or to feeding schedules but the absence of a positive attitude toward close contacts with bulls were all likely to limit stress or its consequences on meat pH. Although these results need to be confirmed in controlled experiments, they suggest that good management of beef bulls before and during transfer is essential to meat quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.