For the room temperature nuclear detector application, signal created in the detector depends not only to the energy of the incident photon but also to the position of the interaction. This can bring an incomplete charge collection caused by a deep-trapping or a ballistic deficit of charge carrier. Many scientists used to demonstrate their impact on the global efficiency of the charge collection. Here we show this effect, not globally but separately, according to the position where holes and electrons are created. It permits us to see the contribution of each kind of carrier in the signal formation. An analytical model of charge collection is developed firstly to take into account the deep-trapping only. Secondly, this model is improved adding the ballistic deficit effect. The deep-trapping contributes to reduce the efficiency of hole above all on thicker detector. In the other part, ballistic deficit reduce electron efficiency above all near anode in the negatively polarized detector.
Radionuclide activities in the kidney and bladder have been estimated experimentally from practical data 3 h after injection of Tc-99m MDP, using conjugate view methodology. The study involved sixty-five patient images from the database of a nuclear medicine department in Ghana. Timeeactivity curve was stimulated with MatLab computer program using biokinetic model published in MIRD Report 13. The model was used to determine theoretical activities in kidney and bladder, which were compared with the experimental data. Estimated radionuclide activities for the kidney and bladder were both minimal in the experimental case comparative to the theoretical. The fraction of injected activity in kidney and bladder were less than 1% of injected activity, and hence kidney and bladder could be seen to receive very low doses during bone scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.