To establish the historical prevalence of the novel yeast species Candida dubliniensis, a survey of 2,589 yeasts originally identified as Candida albicans and maintained in a stock collection dating back to the early 1970s was undertaken. A total of 590 yeasts, including 93 (18.5%) β-glucosidase-negative isolates among 502 isolates that showed abnormal colony colors on a differential chromogenic agar and 497 other isolates, were subjected to DNA fingerprinting with the moderately repetitive sequence Ca3. On this basis, 53 yeasts were reidentified as C. dubliniensis(including the C. dubliniensis type strain, included as a blind control in the panel of yeasts). The 52 newly found isolates came from 36 different persons, and a further 3 C. dubliniensis isolates were detected by DNA fingerprinting of previously untested isolates from one of these individuals. The prevalence of C. dubliniensis among yeasts in oral and fecal samples was significantly higher than that among yeasts from other anatomical sites and was significantly higher among human immunodeficiency virus (HIV)-infected individuals than among known or presumed HIV-negative individuals. However, a single vaginal isolate and two oral isolates from healthy volunteers confirmed that the species is restricted neither to gastrointestinal sites nor to patients with overt disease. The oldest examples of C. dubliniensis were from oral samples of three patients in the United Kingdom in 1973 and 1975. In comparison with age-matched control isolates of C. albicans, theC. dubliniensis isolates showed slightly higher levels of susceptibility in vitro to amphotericin B and flucytosine and slightly lower levels of susceptibility to three azole antifungal agents.
Evidence is presented that the growth medium used to prepare a Candida albicans challenge inoculum is a significant factor determining the ability of a fungus strain to gain an initial invasive hold immediately after injection into an animal host, and thus determining gross strain lethality. Three C. albicans strains, one known to be attenuated in virulence, were grown in two broth media and injected intravenously at different doses into female NMRI mice and male albino guinea pigs. For each fungus strain and challenge dose, survival was longer from inocula grown in a diluted, buffered peptone-based broth than from inocula grown in Sabouraud glucose broth. When animals were challenged intravenously with yeast doses adjusted to give the same mean survival time regardless of strain or growth medium, the progression of fungus tissue burdens (c.f.u. g N1 ) in kidneys, lungs, liver, spleen and brain samples was broadly similar for all three C. albicans strains but differed between the two animal hosts. The morphological form of C. albicans recovered from infected tissues differed at the level of both the fungus strain and the host tissue. Use of survival-standardized inocula provides a means of distinguishing differences in progression of experimental disseminated Candida infections that are related to the infecting strain from those related to the animal host.
A 2(10-5) fractional factorial model was used to investigate the influence of 10 process variables in broth microdilution susceptibility tests with itraconazole against eight isolates of Candida species and six isolates of filamentous fungi in two growth media. An analysis of variance (ANOVA) indicated that glucose concentration and incubation time both significantly influenced control turbidity optical density (OD) values for most of the Candida spp. isolates, while incubation in >10% CO(2) versus ambient air, incubation temperature and inoculum size significantly influenced these OD values for about half of the yeast isolates. Control OD values for the mould isolates were most influenced by incubation time and temperature, and by occlusion of the wells with an adhesive sticker. Three statistical approaches, ANOVA, rank transformation and Mann-Whitney U-test, were used to assess the influence of the variable combinations on MIC, determined with a 50% growth reduction end-point. Incubation temperature and time, glucose concentration and inoculum size were the variables that most often affected susceptibility results to the level of statistical significance; however, the supplier of RPMI 1640 medium, the use of adhesive stickers and the atmosphere of incubation significantly influenced the MIC for some isolates. The medium used to prepare the test inoculum, the solvent used to prepare the stock solution and the shape of the microdilution plate wells significantly affected outcome, but only sporadically. A principal component analysis of the data matrix confirmed this order of relative influence of the test variables on the MIC. Since each fungal isolate responded differently to combinations of process variables in the test, we conclude that any unified method for antifungal susceptibility determination represents a compromise, rather than an idealized system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.