Robotic roller hemming is currently one of the most used solution for joining metal sheets in automotive industry, especially for those production lines which need to favor flexibility with respect to raw productivity and is mostly employed to assemble car doors. Hemming is a fairly delicate process since it does not only suffice a technical requirement – to join two panels together – but also an aesthetical one, since the joint panels are an integral part of the vehicle design and as such an important selling point. An unpredicted rupture or an advanced degradation condition of the system would lead to a significant loss in the quality of the final product or to a sudden stoppage of the production line. The development of a PHM system for hemming devices would hence provide a significant advantage, especially if designed to work for both new and legacy equipment. In this paper, we provide the results of a preliminary analysis of a new PHM framework for robotic roller hemming studied to work without having access to PLC data, the employed data-driven methodology is detailed and applied to the case of increasing wear in the head finger roll. Results from different prognostics routines are hence presented and compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.